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ABSTRACT 
 
 
A growing body of educational research has shown that children learn most effectively 
when they are engaged in designing and constructing things that are personally 
meaningful to them. Consequently, the challenge facing many researchers and 
practitioners has been to design a diverse collection of construction kits that support 
learning about many powerful intellectual and artistic ideas.  In this thesis we report on 
the design and the implementation of a toolkit, called MICK, geared towards rethinking 
music education. MICK is a musical instrument construction kit that enables novices, 
particularly children, to design and build their own musical instruments. The electronics 
components and software tools in MICK make it possible to rapidly prototype a wide 
variety of instruments and other devices. The process of constructing a musical 
instrument with MICK also provides learners with many authentic opportunities for 
exploring and reflecting on important mathematical, scientific, and engineering ideas. 
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“Better learning will not come from finding better ways for the teacher to 
instruct, but from giving the learner better opportunities to construct.” 

-Seymour Papert 
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1 Introduction 

Support for music and theater arts education continues to decline. Many key 

decision-makers in educational systems worldwide bolster support for mathematics, 

science, and technology curricula at the expense of music and theater arts programs. 

However, there are many compelling reasons for protecting the arts education in our 

schools. First, the arts are an important form of human expression in and of themselves. 

Second, the arts have deep connections with and are complementary to the more abstract 

ways in which we as humans describe and make sense of the world around us. Third, the 

arts have been one of the major driving forces behind many technological advancements. 

Finally, children's deep interest in music and the arts provides an authentic context for 

introducing them to many important ideas in mathematics, science, engineering and 

design. 

These observations present us with both a challenge and an opportunity. The 

challenge is to find good ways of preserving what is best about the arts education while 

addressing the growing need for cultivating a technological fluency in our children. On 

the other hand, we have the opportunity to use technology to give children the tools they 

need to create not only their own art but also their own tools for creating art.  In fact, the 

results from a large body of research from the constructionist learning community5,12,13 

have shown that children learn most effectively when they are engaged in creating things 

that they care about.  One of the principle components of the research methodology in 

this community has been to create and evaluate construction kits and support materials 

that provide children with multiple new paths for making sense of the world and 

expressing themselves. 
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Following in the constructionist tradition, the research presented here focuses on 

the design and implementation of a construction kit for making a wide variety of musical 

instruments. A key observation underlying this thesis is that appropriate uses of 

technology can provide children with learning experiences that would fundamentally 

challenge our assumptions and our stance towards music education.  

A closer look at this construction kit would be helpful in getting a better sense of 

the types of learning opportunities it provides. Let us consider an activity in which 

children build their own musical instruments.  In this environment we fill the learners 

toolkit not only with traditional materials like wood and string, but with a broad set of 

electronic sensors capable of detecting touch, light, temperature, distance, motion, sound, 

etc.  Moreover, we provide a software tool that allows users to easily map the input from 

the sensors to musical output.  This environment provides not only the traditional 

characteristics of a musical activity, but also helps the user learn design skills, gain 

technological fluency, engage in deeper social interaction, and connect to important ideas 

in music, science, and engineering. 

While there are many similarities between constructing an instrument from basic 

materials and constructing an instrument that also includes technological tools, the most 

significant trade-off exists in moving from acoustical to digitally created sounds.  For 

example, in constructing a xylophone from wood the designer will need to work very 

hard to insure that each key of the xylophone is the correct size for the pitch it is intended 

to produce.  This physical requirement is similar for other basic instruments like a guitar, 

where the tightening of the strings is the crucial element.  Once the builder moves to 

using a set of electronic sensors the physical details change significantly.  For example, 

the designer might replace a xylophone key with a touch sensor.  Now, the most 
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important element is not the exact size of the key but how the key is struck.  The output 

pitch can easily be set in software to create the correct musical output.  In essence, the 

designer must look at the quantitative values that exist in playing the instrument (what 

value does the sensor read when I strike it?), not just the intuitive quantitative properties 

that exist in a traditional instrument (if I hit the sensor hard the note is loud).  By 

considering this additional element, the user can explore a set of musical mappings that 

are not restricted by the basic materials available.  Moreover, the builder can engage in 

thinking about properties that go beyond intuitive physical relationships and use them to 

augment traditional properties.  

By using this advanced musical instrument construction kit, the user can explore 

not only representations for musical instruments but also methods for representing 

musical ideas and music compositions.  We could even consider an example where the 

instrument can read through music autonomously, though in a different representation 

than sheet music.  One such example might center on a car-like instrument that drives 

over colored pieces of tape.  Each color could represent a different note to the car.  As the 

car drives over that color it sustains the specific pitch for as long as it is driving over that 

color.  Thus a composer of a piece of music for this musical car would write his melody 

in the colored tape.  Beyond this one example it is possible to imagine many other 

musical representations that are very different from traditional musical notation.  This 

realm of possibilities provides the potential for many rich learning opportunities that do 

not simply fit into any one traditional discipline. 

In utilizing this a more advanced toolkit for building instruments, the learner will 

become involved in exploring important ideas in engineering and gain technological 

fluency.  In the interaction with sensors alone, the user will need to begin thinking about 
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scientific ideas.  In using a light sensor, for example, the designer will need to explore the 

types of values that the sensor returns.  After experimenting with the behavior of the 

sensor, they will need to decide what value is a good divider between values that mean 

“light” and values that mean “dark”.  They might decide to divide the returned sensor 

values into several small ranges to provide more detail.  All of these simple interactions 

are important in learning about engineering and design decisions.  Also, these electronic 

elements are probably common in a lot of elements the learner sees outside of this 

activity.  Hopefully they will start to think about the ways they interact with other objects 

and what types of sensors are involved in those interfaces.  Through this continued cycle 

of design, construction, and reflection, learners will build confidence in scientific and 

engineering techniques.  They will develop intuitions about which uses are most effective 

for particular sensors, building materials, and functional mappings. 

In consideration of using this tool in a classroom setting, it is worthwhile to 

briefly examine how activities with this toolkit may be incorporated into the available 

time in a curriculum.  When it is necessary to fit the activities into a limited amount of 

time, it may be best to limit the breadth of the activity on any given day but work hard to 

maintain a continuity from day to day if the activity can be extended to multiple days.  In 

a single short session, learners could delve into one specific aspect of the toolkit related 

to current work in a class.  For example, an activity in a science classroom might examine 

how to build a sensor out of unusual materials and incorporate it into a musical 

instrument built with the toolkit.  When there are less time restrictions, users could be 

permitted to explore the toolkit in whichever directions they choose.  In creating their 

instruments, students would need to find solutions to specific implementation problems 
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they encounter.  In doing so, their desire to make their instrument perform well will drive 

their exploration of the underlying tools and scientific ideas that are needed. 

The previous discussion has been the driving force for designing a new 

computational toolkit for music education. This document will detail the design rationale, 

implementation, evaluation, possible uses, and future directions of a Musical Instrument 

Construction Kit (MICK) through four chapters. The first of these chapters will describe 

a sample scenario that reflects the type of interaction we feel is possible based on the 

features of the tool and the activities we have observed.  The next chapter provides a 

technical description of both the software and hardware components of MICK.  In the 

third chapter, results from workshops and feedback sessions are described.  We look at 

future directions for MICK in the last chapter. 

 



 14 

 

2 Scenario 

To help illustrate the type of interaction envisioned between a child and this new 

musical instrument construction kit we will develop a scenario in which a child uses the 

toolkit.  In this example a child named Mick will explore building a musical instrument 

and then share the musical instrument he has created with his classmates at school. 

Mick begins by opening his toolkit and seeing what types of objects are inside.  

He finds an assortment of sensors, an interface to connect the sensors to his computer, 

and software that enables him to program how his musical instruments will work.  Mick 

decides that he will look at a few of the examples provided in a booklet that came with 

the kit before deciding exactly what he wants to build.  The first example shows how to 

build a set of bongos.  Each of the two drums is created from a light sensor.  When the 

light sensor is covered the drum sounds.  This simulates the action of striking a real drum.  

After building and playing the bongos for a short time, Mick changes the sounds the 

drums are producing to different drum sounds.  He tries cymbals and other drums.  Mick 

next looks at one other example – a small piano.  Each key in the piano uses a touch 

sensor.  When the sensor is pressed, a note is played for that key.  While exploring this 

example, Mick decides to change the notes that the piano plays to a different scale.  Then 

Mick gets another idea.  He records his voice saying different words and replaces the 

notes with his recorded voice.  Now he can form sentences by pressing the keys in the 

right order. 

After playing with these two example instruments, Mick now feels ready to create 

his own instrument.  He decides that he will try using a distance sensor and map the value 

of that distance sensor to a musical pitch.  While experimenting with different ranges and 
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different MIDI voices, Mick decides to only have the notes play when he blows into a 

wind velocity sensor.  Now when he blows into the sensor, a note is played based on the 

value of the distance sensor.  This correlation reminds Mick of a trombone so he decides 

to change the MIDI voice to a trombone sound.  Finally, Mick decides to add volume 

control to his instrument.  He maps the wind velocity sensor to the volume of the output 

so he can play loudly by blowing hard or play softly by blowing lightly.  After a little bit 

of decoration, Mick feels that his instrument is complete. 

Mick is proud of the instrument he has made and decides to take it to school and 

to show it to his classmates at school the next day during show and tell.  During his 

presentation, Mick talks about his instrument and how he expanded it from one sensor to 

two.  He talks about choosing the right sensor values for his instrument and how the 

values map to musical output.  After he shows his instrument, the class talks about the 

interfaces that different instruments have.  They also talk about how they interact with 

other objects besides musical instruments and how other types of interfaces are designed. 

 After school that day, Mick returns home inspired to build a new sensor for use in 

a musical instrument.  By connecting two wires to a piece of fresh Play-DohTM 11, Mick is 

able to measure a resistive value.  As he sculpts the Play-DohTM, Mick is able to change 

the value.  Much like his previous instrument, Mick maps this value to a musical pitch.  

However, due to the novel nature of the Play-DohTM instrument, Mick would like to 

create a special way for notating songs he will play on the instrument.  Mick decides to 

write the music much like a mathematical plotting.  The value of the drawn function 

represents how “squeezed” the Play-DohTM in the instrument appears at each point.  This 

representation allows Mick to play through his song by executing the correct pattern of 



 16 

squeezes; Mick does not even need to know the details of standard musical notation in 

order to play the songs he writes.  He has created his own independent representation. 

 The Scenario above presents many different types of interactions between Mick 

and the toolkit, yet the ideas for these sample interactions did not come from a vacuum.  

The workshops conducted as a part of this research, as well as other feedback and 

inspiration from other Media Lab groups, directly demonstrated or strongly anticipated 

all of these types of interactions.  Reading through the remainder of this document, the 

reader may find it helpful to keep in mind the broad range of interactions that are 

possible, and how these interactions can positively affect learning.
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3 Design Evolution and Implementation 

The musical instrument construction kit (MICK) developed out of previous work 

done in the Epistemology and Learning Group and the Lifelong Kindergarten Group at 

the MIT Media Lab.  Expanding on workshops6 done with a small programmable device 

called a Cricket2,8, initial prototypes utilized a desktop environment that contained tools 

for writing musical compositions and programming musical instruments that contained 

Cricket sensors and devices.  After those beginning efforts, the project was revamped to 

utilize the PocketPCTM 14 as both a programming environment and controller for the 

musical instruments. 

 

3.1 Background Work 

The first ideas for the musical instrument construction kit evolved from earlier 

work done with the Cricket.  The Cricket itself is a small computer only slightly larger 

than, and powered by, a 9-volt battery. A single Cricket is capable of powering two 

LEGO motors, monitoring two sensors, and controlling several additional devices. 

Crickets can also communicate with other Crickets or a computer interface using infrared 

light. A dialect of the Logo programming language is used to program the Crickets. The 

language includes procedure calls, simple control structures, and standard numeric 

operations. Logo also has functions for motors, sensors, timers, and playing tones. 

There have been several expansions to the basic Cricket as well. The selection of 

sensors, once including only light and touch sensors, now provides sensors to detect 

temperature, reflectance, acceleration, and more. In addition, expansion devices are 
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available which can be plugged into the Cricket’s bus ports. One such device provides 

additional inputs for sensors, allowing four additional sensors per device beyond the 

original two. 

 
Figure 1: The Cricket 

 
 One recently created bus device that is especially useful for a Cricket based 

musical instrument is the Musical Instrument Digital Interface (MIDI) bus device10. With 

a set of primitive commands the Cricket can play musical notes using standard MIDI 

voices and channels, just like a musical synthesizer. MIDI commands are more 

complicated than other basic Logo commands and that makes MIDI programs much more 

difficult to write.  More information about the Cricket may be found in Appendix A.  

More information on MIDI features may be found in Appendix E. 

 
Figure 2: A Cricket with Bus Devices 
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 Some software tools have been written to aid in Logo programming.  An 

application3 written in the MicroWorldsTM 9 environment is currently the standard 

environment for programming the Cricket.  It offers a command center interface for 

running code one instruction at a time as well as tools to load longer user programs onto 

the Cricket.  LogoBlocks1,7, another tool, provides a visual programming environment in 

which Logo commands and control structures are represented and manipulated as 

graphical blocks. A sequence of instructions is created be “snapping” the blocks together.   

However, neither of these tools currently has an easy method for programming MIDI 

commands. 

 This conflict between the common desire to build a musical instrument with the 

Cricket and the lack of an effective tool for creating a musical instrument became evident 

at a number of workshops with the Crickets.  Although it was possible to build the 

instruments, the complexity needed to be relatively low and the time required to complete 

the instruments was often large. 

 

3.2 Initial Prototype 

The development of MICK began by focusing on improving the way in which a 

Cricket musical instrument was programmed.  The new toolkit aimed at providing a 

simple interface for achieving musical effects.  The first part of the project aimed at 

creating an environment for writing music compositions for playback on the Cricket.  The 

second part of the project developed a graphical environment for programming a Cricket 

to behave like a musical instrument.  Both of these elements were originally aimed at the 

desktop environment. 
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 The melody editor provides a graphical interface for writing musical scores in 

standard notation.  The user can select notes and markings from a palette and place them 

on a staff.  The tool handles spacing the notes appropriately and positioning markings and 

notation in the appropriate place.  The playback of the score can also be modified to use 

any set of MIDI voices.  Once finished the melodies can be outputted as Logo code that 

can then be loaded onto a Cricket and be played back. 

 
Figure 3: Melody Editor Screenshot 

 
The more significant half of the project was the instrument editor.  The instrument 

editor allows the user to map sensor actions to musical output and other MIDI effects.  

For each sensor, the user can define a range for the effect to occur.  When the sensor’s 

value enters that range, the musical effect occurs.  This effect could be playing a note or a 

chord, playing a melody, or performing some other Cricket action like turning on a 

motor.  Though it was possible to quickly design an instrument with this interface, the 

Cricket suffered from a lack of processing power and a severe bottleneck in 

communication with the connected devices.  Therefore, a new solution was developed in 

which the processing of the Cricket would be replaced with a PocketPCTM.  In addition a 
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new interface would be designed to allow the PocketPCTM to communicate with the same 

devices as the Cricket.  These improvements were completed for the current version of 

MICK described below. 

 

3.3 The MICK Environment 

The full version of the project is called the Musical Instrument Construction Kit 

(MICK).  It uses the PocketPCTM rather than the desktop as the main working platform.  

To enable the PocketPCTM to work with the Cricket’s sensors, motors, and bus devices a 

special Serial Interface was designed.  The initial instrument creation software created for 

the desktop was recreated and improved in a version for the PocketPCTM.  The melody-

editing tool remained fairly untouched, though it was modified to download melodies to 

the PocketPCTM. 

In order to allow the PocketPCTM to connect with Cricket sensors and bus devices, 

a new interface needed to be made with the PocketPCTM’s native serial port.  This 

interface would need to receive bytes from the PocketPCTM that specify actions for the 

interface to perform, like checking a sensor’s value, and then send bytes back with the 

specified result.  There were three such actions that the interface needed to implement: 

sensor checks, midi commands, and bus commands. 

The top two bits of each byte specify the action type; the remaining six bits 

contain information relevant to that command.  For sensor checks, the low bits describe 

the sensor port to check.  That port is checked and the value is returned in a byte.  For a 

MIDI command the low bits specify how many MIDI instructions of one byte each, 

either two or three, will follow.  Commands for bus devices use the lower bits to describe 
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how many bytes will be sent to the bus device, and then how many bytes will be read 

back to the PocketPCTM. 

Command Type Byte Appearance Comments 
Sensor Check 00XXXPPP PPP is three bit id (0-7) of 

the sensor port to check.  
For example, ‘00000010’ 
means check sensor port 2. 

MIDI 01XXXXXB B is number of bytes in the 
MIDI command: 

0 = 3 byte command 
1 = 2 byte command 

Bus Device 10RRRSSS RRR and SSS are 3 bit 
values (0-7).  SSS is the 
number of bytes to send to 
the bus device.  RRR is the 
number of byte to receive 
from the bus device. 

Table 1: Serial Interface Byte Commands 

Sensor ports on the Serial Interface provide ports identical to the ports on the 

Cricket.  The interface provides room for eight sensors directly on the board, though 

additional sensors can be provided with bus devices.  Sensor values are calculated using 

analog to digital conversion on a PICTM processor.  For complete assembly code, block 

diagram, and PCB layout of the interface board see Appendix B. 

One problem encountered in connecting the interface to standard Cricket bus 

devices was the communication protocol.  Whereas the PocketPCTM communicates with 

the Serial Interface using bytes (8 bits each), the Cricket communicates with bus devices 

using a 9 bit instruction, eight bits of data plus an additional command bit. After 

synchronizing with the bus device, the Cricket begins by sending a start bit, one high bit.  

Next follows 8 bits of data.  The tenth bit of the signal is a command bit.  This command 

bit is zero if it is the first bit sent to a bus device and one otherwise.  The last bit sent is a 

low bit, the stop bit (see Figure 4). 



 23 

 
Figure 4: The Bus Device Protocol8 (reprinted with permission) 

 
 In order to account for the command bit, the Serial Interface makes the command 

bit low for only the first command sent to the bus devices from the Serial Interface.  The 

eight bits of data are exactly the contents of the bytes sent from the PocketPCTM to the 

interface.  The interface already knows how many bytes it will send from the original 

command byte (see Table 1 above). 

The instrument editor on the PocketPCTM is very similar to the interface of the 

initial prototype for the desktop environment.  Sensor values may still be mapped to 

musical output in the same way.  The interface now provides many improvements over 

the original prototype.  In addition to MIDI output, sounds recorded as wave files can 

also be outputted.  Bus devices also provide an additional method of creating output 

whether through motors, displays, are other devices.  One additional feature allows 

sensor values to be mapped through a mathematical function to output. 

Because of the number of devices that could be attached to the Serial Interface, it 

is critical that the exact location of those devices be specified.  MICK allows the user to 

describe where devices are located using simple dialog boxes.  For sensors connected to 
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the interface, naming the port is all that is required.  For bus devices, the type and 

coloration of the bus device (red, blue, yellow, or white) is also needed. 

The sensor ports on the Serial Interface to the PocketPCTM replicate the ports 

existing on Crickets.  Therefore sensor values can be treated exactly the same way as in 

the initial prototype.  Sensors are divided into two basic categories: toggle and ranged.  

Toggle sensors only encompass touch sensors.  For these sensors, the value returned to 

the Cricket is a value of true or false.  Actions may be triggered for either of those two 

states.  For example, we might want to say “when touch sensor #1 is pressed then do 

some action.” 

 For ranged sensors, the value returned to the Cricket is an integer in the range 

from 0 to 255.  For these sensors it is necessary for the user to specify what values will 

trigger an action by setting up a range.  This range would have an upper and lower bound 

within the range 0 to 255.  For example, we might want to say “when light sensor #2 is 

returning a value between 100 and 200 then do some action.” 

In the examples above, the “do some action” phrase has not yet been clarified.  

The user selects the desired actions from a set of options that are displayed, such as 

playing a note, playing a melody that was created in the melody editor, or causing some 

MIDI effect to occur.  Once the type of action has been selected the user then supplies the 

details of that action.  For example, in the case where the user would like a note (or set of 

notes to be played), a window appears where the user enters the notes to be played.  If the 

user selected to play a melody, a box would appear where the filename for that melody 

should be entered. 

 In addition to MIDI output through a speaker connected to the Serial Interface, the 

PocketPCTM includes an internal speaker that allows for additional media output.  The 
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most direct application of this capability is triggering wave file playback as output.  This 

feature allows for many interesting instruments, such as a child creating an instrument 

that outputs sounds recorded from their own voice. 

The ability to use bus devices for additional output provides a whole new scope 

for the type of projects created with MICK.  Not only basic musical output may be 

performed, but control of motors and other devices.  Instead of making merely a musical 

interface, a student could create an interface for controlling a car or robot.  This 

functionality allows MICK to be used as a general-purpose tool in addition to just a 

musical tool. 

One significant feature added in the PocketPCTM that goes outside any feature in 

the initial desktop version is a tool for creating functional mappings.  In a functional 

mapping, a sensor’s value is passed through a mathematical function to return a new 

value.  It is the returned value that may then be used for other effects.  For example, a 

light sensor might be used with a functional mapping to control the instrument’s volume.  

These mappings do not need to be linear.  MICK provides four basic functions for 

mappings: linear, inverse, square, and square root. 

 The complete manual for MICK and all the possible actions it performs with 

examples is given in Appendix C. 
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4 Evaluation 

MICK was demonstrated and used in several environments to get feedback on its 

functionality and usability.  This feedback came from workshops conducted with middle 

school children ages eleven to thirteen, as well as through comments from other 

researchers in the MIT Media Lab.  Particularly useful feedback was received from 

members of the Hyperinstruments Group directed by Tod Machover. 

 

4.1 Workshop Results 

The workshop consisted of three main phases.  At the beginning, MICK was 

introduced to the students through some example instruments and a brief tutorial.  Most 

of the time in the middle was dedicated to allowing the students to design and build an 

instrument from the tools and materials provided.  At the end of the workshop each 

participant shared the instrument they had created. 

The workshop began by introducing the students to two previously built 

examples.  The first example was a simple piano.  The piano consisted of five keys, with 

each key having an associated light sensor.  The sensor was normally covered, but when 

a key was pressed the light was revealed to the sensor.  The piano was set up to play one 

section of a standard scale with no special modifications.  The second example was built 

to explore the realm of non-traditional instruments.  It consisted of a raised rail with a 

moving car.  An optical distance sensor was attached to the car facing downwards, with 

enough open space existing below the car to allow blocks to be stacked to different 

heights.  As the car moved back and forth on the rail, the distance sensor would measure 
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the distance to the stack of blocks directly below it and then map that value to a note.  A 

tall stack of blocks would result in a high pitch, while a low stack of blocks would result 

in a low pitch.  In addition, the instrument possessed a display that showed the value the 

sensor was reading.  The display was useful in debugging the instrument and explaining 

the instruments operation to the students. 

 
Figure 5: Sliding Car Instrument 

 
 After demonstrating these two instruments, the students were introduced to the 

software interface through a tutorial.  The participants were shown how to start a new 

instrument and set the port location for the sensors they added.  Next, the students went 

through the step-by-step process of setting up a light sensor with different ranges to play 

different notes.  Following this introduction to MICK, the students began to design and 

build their own musical instruments. The creations of two of the students are described in 

detail below. 

 One of the students, named Andy, was interested in building an instrument that 

behaved like a guitar.  He began by choosing the type of sensors he wanted to use.  Andy 
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decided touch sensors would work well for emulating the frets of the guitar as well as the 

strings of the guitar.  Andy’s next step was building the body of the guitar out of LEGO 

building blocks and embedding three touch sensors to represent strings, and two touch 

sensors in the neck of the guitar to use for frets.  Now it was time to begin programming 

the guitar so the sensors would trigger sounds.  The first step in programming the guitar 

was setting up one of the touch sensors representing a string.  Since the default MIDI 

voice of the instrument sounded like a piano, Andy immediately changed the MIDI voice 

to sound like a guitar.  After the first string was ready, Andy programmed the other two 

strings two sound at higher pitches than the first.  Now Andy moved to the frets of the 

guitar.  With a little help, Andy learned how to shift the pitch of other notes that were 

playing.  Using this feature of the toolkit, he had the touch sensors on the fret modify the 

pitch of the notes played by the string sensors.  This behavior was very true to the actual 

operation of a real guitar.  After completing this first small guitar, Andy began building a 

more complete guitar with six strings and more frets. 

 
Figure 6: Guitar Instrument 
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 Another participant at the workshop, named Jessica, built a very unusual 

instrument.  She wanted to use a temperature sensor in her instrument.  First she thought 

about what would be a good way to get different temperature readings.  She quickly 

decided to use bowls of different temperature water.  She filled three bowls with water: 

one warm, one medium, and one cold.  She had seen the display used with the sliding car 

instrument and decided to use the same approach to help figure out what ranges to use in 

distinguishing the different temperatures of water.  She measured each bowl of water 

with the sensor and picked a wide enough range to insure that she would identify the 

different bowls of water.  Jessica first assigned a sound to the cold water.  She wanted the 

instrument to play a high screeching pitch like someone would make when the feel really 

cold water.  For the medium temperature she picked a chord that was in the middle; for 

the warm water she picked a very soothing chord.  Once the instrument was playing the 

right sounds with one sensor she began experimenting with using a second temperature 

sensor.  Eventually, she decided that just one sensor was best.  Finally, Jessica completed 

her instrument by adding extra decorations with colored pipe cleaners. 

Overall, the workshop went very well.  All of the participants were very excited 

about the instruments they were creating and very happy with the results.  None of the 

participants had particularly strong musical backgrounds, but they did not have problems 

using what they did know from just listening to music and seeing instruments played to 

get started on their own project.  Also, the students felt they gained knowledge about 

music as well as about using electronic sensors. 

Even in the limited time of this preliminary workshop, participants were able to 

complete a first version of their instruments and have many more ideas for other 

instruments.  If given the possibility to continue interacting with this toolkit, these users 
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would have opportunities to learn additional ideas in music, science, and engineering 

design.  Their competency with basic tools could enable them to explore more 

sophisticated constructions and ideas.  We suspect that over time users will reach fluency 

with the material in the toolkit.  They will be able to talk competently about what they 

have created, in terms of musical and technical properties, and what their process was in 

doing so.  Moreover, they will be able to consider other alternate ways of designing their 

instrument and evaluate those designs. 

 

4.2 Additional Feedback 

Beyond just the reactions from the students at the workshop, teachers, parents, 

and other researchers at the lab made comments about the musical instrument 

construction kit.  While many of the comments were related to technical aspects of the 

system, other comments addressed ways of using the system in different activities. 

Many of the technical comments addressed the ability of the system to affect fine 

detail and expression in performance.  The chief observation was that simple MIDI was 

not capable of performing a high enough level of detail for use in genuine performance 

situations.  While this fact is certainly true, the instruments we expect that students will 

design with this system would be more closely matched with the style of instruments a 

student would make from traditional materials.  Neither of these categories of instruments 

would probably be seen on a concert hall stage.  Nevertheless, it may be possible to 

modify the toolkit to bridge this existing gap between very sculpted and advanced 

technological instruments capable of true performances and the MIDI producing 

instruments made from the toolkit. 
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Another comment addressed the set of actions available to perform in the toolkit.  

Other forms of media output, like displaying video to the screen, were suggested.  Also, 

the ability to change high-level properties of the instrument with a sensor mapping was 

also proposed.  These might include switching MIDI voices or changing the behavior of 

the instrument based on some sensor mapping. 

Musical representations were also addressed in some of the comments.  In the 

programming environment, the user is forced into dealing with the standard musical 

notation that includes staffs and clefs.  Several people thought that providing other ways 

of indicating the notes to be played could be effective, like using drawings or colored 

mappings.   
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5 Future Directions and Conclusions 

Currently we have a stable software environment in MICK for writing music and 

creating musical instruments, as well as a tested set of hardware components for enabling 

the construction of a wide variety of instruments.  Through both our personal evaluation 

process and outside feedback we have identified a number of ways in which to improve 

MICK.   

Hardware 

Expanding the variety of sensors available will quickly enhance the types of 

instruments that users can create.  For example, a simple wind sensor would allow the 

construction of brass and woodwind style instruments that successfully replicate the feel 

of their traditional counterparts.  We would like to extend the Serial Interface with two 

additional boards (stackable layers).  The first is an improved version of our MIDI 

controller board.  The second is a digital sound sampling and playback board. 

Software 

We would also like to make the software more powerful through steps in three 

important directions.  First, we would like to provide ways of representing ideas and 

information in new and novel ways.  Second, we would like to allow users to interact 

with the large body of music that already exists.  Third, we would like to provide a 

scripting tool that enables more sophisticated instruments and a broader set of activities. 

While MICK’s interface allows users to program their instruments using standard 

musical notation and mathematical formulas, it would be nice to provide tools that are 

more imaginative and variable.  For example, instead of modifying a standard 
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mathematical function, the designer could simply draw a function, standard or unusual, 

which could then be used in their mathematical mappings.  Similarly, we would like 

abstract ways of representing musical pitches and expressions.  Such a representation 

might make use of color mappings or constructions in three-dimensional spaces.  Simply 

expanding the realm of possibilities could spark an entire set of new ideas in people using 

MICK, and thereby create an interesting new set of non-traditional instruments.  

Allowing users to incorporate the large body of already existing musical 

repertoire is also important.  To this end we would like to incorporate tools for importing 

MIDI files into the system.  Users would then be able to play their instruments along with 

those files.  This type of interaction will engage users in a much richer performance 

environment. 

The last major improvement we suggest here has been thought about in great 

detail.  A tool for scripting a series of device commands would provide a significant 

expansion to the current interface.  Rather than only performing a single action, the 

designer could trigger a set of actions.  For example, the instrument would be able to 

blink lights in some repeating sequence or perform a sequence of motor actions.  This 

expansion to MICK would be especially useful for creating general-purpose tools like an 

interface for controlling a robot, driving a car, or playing a video game.  The most 

intricate aspect of the scripting environment is providing a method of multithreading the 

commands so that the sensor actions can cause multiple sequences to interleave, as well 

as supporting delays and procedure calls.  Conveniently, most of these characteristics can 

be maintained by storing the command sequences in separate lists for each sensor and 

expanding calls in a lazy (waiting until required for execution) fashion.  When a sensor 

re-enters a range, the user will probably want to decide whether to append the sequence 
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to the end of the list or clear the list and begin the sequence again.  Other questions 

include the use of global and local variables to avoid race conditions and other problems. 

A further discussion of such a scripting language can be found in Appendix D. 

Activities 

This toolkit could provide a wide set of activities in both music and science 

classrooms.  For example, a very rich activity in a science class, which relates to the 

musical instrument construction, could be to explore how everyday materials (such as 

Play-DohTM, dish soap, fruits and vegetables, etc.) can be used to create novel sensors.  In 

turn, those sensors can be used to create very whimsical musical instruments.  This could 

naturally lead to a discussion about appropriate representations for notating and playing 

music for such an instrument.  Furthermore, this could lead to an interesting discussion 

on the history of musical instruments and musical notation in the music classroom.  In 

this direction, an immediate future project is to develop detailed activity booklets and 

support materials.  In addition to schools, MICK can also be introduced into a clubhouse 

or after-school setting to provide kids with a chance to explore their ideas and promote 

their social interaction by playing the instruments they have created in small ensembles. 

Conclusions 

The focus of the project thus far has been on creating a powerful construction kit 

that highlights the interplay between many important ideas in music, science, and 

engineering design.  In this thesis we presented the design rationale and implementation 

of MICK.  We also discussed our preliminary findings from a number of studies and 

discussions with children, schoolteachers, and professional musicians.  While we have 

had a lot of encouraging results from these interactions, we believe that there remains a 
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need for a careful study of what learning opportunities these tools afford, and what 

implications they have for all aspects of our educational system. 

For updates on the development of this project go to 

http://llk.media.mit.edu/projects/MICK/. 



 36 

 

References 

1 Andy Begel.  Logoblocks: A graphical programming language for interacting with 

the world.  MIT Media Laboratory, 1996. 

2 Cricket, see http://llk.media.mit.edu/projects/cricket/ 

3 Cricket Logo, http://llk.media.mit.edu/projects/ProgrammableBricks/Home.htm 

4 F&B PICTM Programmer, see http://www.media.mit.edu/llk/projects/picdev/ 

5 Aaron Falbel.  Constructionism: Tools to Build (and Think) With.  LEGO DACTA, 

1995. 

6 Carol E. Foltz.  Learning Through Design of Programmable Musical Instruments.  

MIT Media Laboratory, 1996. 

7 Logo Blocks, see http://llk.media.mit.edu/projects/summaries/bbp.shtml 

8 Fred Martin, Bakhtiar Mikhak, and Brian Silverman.  MetaCricket: A Designer’s Kit 

for Making Computational Devices.  IBM System Journal, VOL 39, NOS 3&4, 2000. 

9 MicroWorldsTM Software, see http://www.microwolrds.com 

10 MIDI Board, see http://www.media.mit.edu/~jrs/minimidi/ 

11 Music Shapers and Toys, see http://www.media.mit.edu/hyperins/projects.html 

12 Seymour Papert.  Mindstorms.  Basic Books, Inc., New York, New York, USA, 1980. 

13 Seymour Papert.  What’s the Big Idea?  Steps Toward a Pedagogy of Idea Power. 

IBM Systems Journal, 2000. 

14 PocketPCTM, see http://www.compaq.com/pocketpc/ 



 37 

 

Appendix A: The Cricket 

 To make this document self contained, in this appendix we will provide some 

technical detail about the Crickets in so far as they influence the design of the Serial 

Interface for this project.  For a more detailed discussion of the Cricket system, please 

refer to the MetaCricket Paper from which the contents of this appendix have been 

reproduced (with permision). 

The Cricket. The Cricket is a tiny, programmable computer (about the size of a 

9-volt battery) that can directly control motors and receive information from sensors.  

The Cricket evolved from earlier MIT “Programmable Brick” designs, which have led to 

the recently introduced LEGOTM MindstormsTM Robotics Invention SystemTM with its 

RCXTM Brick. 

The Cricket is based on a Microchip PICTM microprocessor. Basic actuators like 

DC (direct-current) motors and lightbulbs plug into one of the Cricket's two motor 

outputs, and simple resistive sensors such as switches, photocells, and thermistors plug 

into the Cricket's two analog voltage-sensing inputs.  

All Cricket devices have a built-in bidirectional infrared communications channel, 

which is used for Cricket-to-desktop communication (when downloading programs to a 

Cricket, or viewing sensor data) and Cricket-to-Cricket communication. The Cricket also 

includes a peripheral expansion port, or “bus port.” The use of this port greatly expands 

the capability of the Cricket and is discussed in depth later in this paper.  
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Feature Description 

  
   Program size 2048 bytes of compiled code 

Each user-level primitive function compiles to 1, 2, or 3 bytes 
 

   Procedures Arbitrary number of numeric inputs allowed 
May provide numeric return value 
 

   Number system 16-bit integers 
Add, subtract, multiply, divide, remainder, and modulus operators 
Greater than, less than, equality operators 
And, or, not, and exclusive-or operators 
Random number generator 
 

   Data and variables 16 available global variables 
Local variables (limited by stack depth) 
One-dimensional arrays (2048 bytes total array data, 
     Persistent through power cycling 
 

   Control structures If-then; if-then-else 
Loops (repeat n times or infinite) 
Waituntil (Boolean expression) 
 

   Multitasking One foreground thread plus one background daemon 
Daemon fires when provided Boolean expression makes 
     False-to-true transition 
15-bit background millisecond timer (4-millisecond ticks) 
 

   Communications Integrated infrared (IR) program download protocol 
Low-level primitives for IR communication between Crickets 
Low-level primitives for peripheral bus communication 
 

   Hardware-specific Motor power, direction 
Analog input 
Boolean input 
Piezo tones 
 

Table 2: Cricket Logo Feature Overview 
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Of particular importance to this project is the set of bus device that have been created and 

may be used with MICK.  A partial listing of these devices is given below. 

** DC Motor Controller 

** Servo Motor Controller 

** Numeric and Alphanumeric Displays 

** Tri-Color LED and Mater Controller 

** IR Transceiver Boards 

** RF Transceiver Boards  

** Additional Resistive Sensor Ports 

** Optical Distance Sensor 

** Reflectance Sensor 

** LEGO Rotation Sensor 

** Voice Recorder and Playback Module 

** Heart Rate Monitor 

** Sonar Range Sensor 

** Clap and Pitch Sensor 

** Keypad 

** Digital Compass 

** 2-axis Accelerometer 
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Appendix B: Serial Interface 

 Hardware 

 Provided below is a schematic of the initial interface board.  The interface is 

based on a PIC16F876 processor and uses a MAX233 to communicate over the serial 

cable with the PocketPCTM.  Assembly (PICTM) code describing its operation is also 

provided. 

 
Figure 7: Serial Interface Block Diagram 

The Serial Interface’s actual layout consists of two PCB boards stacked on top of each 

other (utilizing header pins).  One of the boards contains the PICTM and serial 

componenets, the other board contains the sensor ports.  These two PCB layouts are 

shown on the following page. 
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PICTM Board (top) PICTM Board (bottom) 

 
 

              
 

Sensor Board (top) Sensor Board (bottom) 
 

                           
 

Assembled PICTM Board Assembled Interface 
 
 

Figure 8: Serial Interface PCB Layout 
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 Software 

 The assembly code used on the PICTM will also be provided here.  First however, 

the mapping4 between the MicroChip PICTM op-codes and the op-codes used in the 

Cricket assembler are provided. 

In general: 
 
** The w register has been renamed a. This convention is followed by almost every 

other processor that only has a few registers. 
** In the Cricket assembler the addressing mode is part of the op-code rather than an op-

code/syntax combination. E.g. the add instruction are 
 

add x 
addn x 
addm 

 
The first form adds the contents of ram location x to a. The "n" form (read as "add 
number") adds a constant value to a. The "m" (read as "add to memory") form adds a 
to a memory location. 

 
The inc instructions are 
 

inc x 
linc x 

 
The first form increments memory location x. The "l" form (read as "load and 
increment") loads the contents of location x into a and then increments a. 
 
The "mov" instructions have been renamed as load (lda) and store (sta) instructions - 
again following the model of most other simple CPU's. 

 
** A few other instructions (e.g. goto, call > bra, bsr) have been renamed. 
 
** The order of the inputs to the bit instructions has been swapped. 
 



addwf x,0  >>  add x 
addwf x,1  >>  addm x 
addlw x  >>  addn x 
 
andwf x,0  >>  and x 
andwf x,1  >>  andm x 
addlw x  >>  andn x 
 
iorwf x,0  >>  or x 
iorwf x,1  >>  orm x 
iorlw x  >>  orn x 
 
subwf x,0  >>  sub x 
subwf x,1  >>  subm x 
sublw x  >>  subn x 
 
xorwf x,0  >> xor x 
xorwf x,1  >>  xorm x 
xorlw x  >>  xorn x 
 
comf x,0  >>  lcom x 
comf x,1  >>  com x 
 
decf x,0  >>  ldec x 
decf x,1  >>  dec x 
 
decfsz x,0  >>  ldecsz x 
decfsz x,1  >>  decsz x 
 
incf x,0  >>  linc x 
incf x,1  >>  inc x 
 
incfsz x,0  >>  lincsz x 
incfsz x,1 >>  incsz x 
 
rlf x,0  >>  lrol x 
rlf x,1  >>  rol x 
 
rrf x,0  >>  lror x 
rrf x,1  >>  ror x 
 
swapf x,0  >>  lswap x 
swapf x,1  >>  swap x 
 
movf x,0  >>  lda x 
movf x,1  >>  tst x 
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movwf x  >>  sta x 
movlw x  >>  ldan x 
 
clrf x  >>  clr x 
clrw >>  clra 
 
bcf x,b  >>  bclr b x 
bsf x,b  >>  bset b x 
 
btfsc x,b  >>  btsc b x 
btfss x,b  >>  btss b x 
 
call x  >>  bsr x 
goto x  >>  bra x 
 
retfie  >>  rti 
return  >> rts 
retlw k  >>  rtv k 
nop  >>  nop 
clrwdt  >>  clrwdt 
sleep  >>  sleep 

  
 

We now provide the PICTM code: 
 

; PocketPC Interface 
; Sam Thibault 
; samt@mit.edu 
; Chris Lyon 
; scooby@mit.edu 
; 3-1-01 
 
; watch out for $0c as temp register 
; it is used for serial comm 
 
; "hardware" registers 
 [const @ 0] 
 [const timer 1] 
 [const pcl 2] 
 [const status 3][const c 0][const z 2] [const bankl 5] [const 
bankh 6] 
 [const @@ 4] 
 [const porta 5] 
 [const portb 6][const portb-ddr $86] 
 [const portc 7] 
 [const portd 8] 
 [const porte 9] 
 [const pir1 $0C][const rcif 5] 
 [const rcsta $18][const spen 7][const cren 4][const oerr 1] 
 [const txreg $19] 
 [const rcreg $1A] 
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 [const t1 $20] 
 [const transmit-byte $21] 
 [const receive-byte $22] 
 [const sensor-reading $23] 
 [const bus-code $24] 
 [const led-port portb] 
 [const led-pin 4] 
 [const option 1]      ; bank 1 
 [const txsta $18][const csrc 7][const txen 5][const sync 4][const 
brgh 2] 
 [const spbrg $19] 
 [const tx-port portb][const tx 1] 
 
 [const adresh $1e] 
 [const adcon0 $1f] ;bank zero 
 [const adcon1 $1f] ;bank one 
 [const adon 0][const adgo 2]  
 
 [const intcon $0b] 
 [const gie 7] 
 [const counter $25] ;$0c ; bit counter for byte in process 
 [const bus-data $21] 
 [const bus-port portb][const bus 2] 
 [const bus-port-ddr portb-ddr] 
  
 
start 
        [bsr io-init] 
 
loop 
        [bsr serial-tyi] 
 [bra dispatch] 
  
dispatch 
 [btsc 7 receive-byte] 
 [bra bus-dispatch]  
 [btsc 6 receive-byte] 
 [bra midi-dispatch] 
 [bra sensor-dispatch] 
        [bra loop] 
 
bus-dispatch 
 [lda receive-byte] 
 [sta bus-code] 
 
 [btsc 0 bus-code] ; send 1 byte 
 [bsr bus-disp-send1] 
 [btsc 1 bus-code] ; send 2 bytes 
 [bsr bus-disp-send2] 
 [btsc 2 bus-code] ; send 4 bytes 
 [bsr bus-disp-send4] 
 
 [btsc 3 bus-code] ; receice 1 byte 
 [bsr bus-disp-rec1] 
 [btsc 4 bus-code] ; receive 2 bytes 
 [bsr bus-disp-rec2] 
 [btsc 5 bus-code] ; receive 4 bytes 
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 [bsr bus-disp-rec4] 
 
 [bra loop] 
 
bus-disp-send1 
 [bsr serial-tyi] 
 [lda receive-byte] 
 [sta transmit-byte] 
 [bsr bus-tyo] 
 [rts] 
 
bus-disp-send2 
 [bsr bus-disp-send1] 
 [bsr bus-disp-send1] 
 [rts] 
 
bus-disp-send4 
 [bsr bus-disp-send2] 
 [bsr bus-disp-send2] 
 [rts] 
 
bus-disp-rec1 
 [bsr bus-tyi] 
 [lda bus-data] 
 [sta transmit-byte] 
 [bsr serial-tyo] 
 [rts] 
 
bus-disp-rec2 
 [bsr bus-disp-rec1] 
 [bsr bus-disp-rec1]  
 [rts] 
 
bus-disp-rec4 
 [bsr bus-disp-rec2] 
 [bsr bus-disp-rec2] 
 [rts] 
 
sensor-dispatch 
 ;full return not implemented but individual readings are for 0-4 
 [btsc 2 receive-byte] ;sensor 4 
 [bra read-sensore] 
 [btsc 1 receive-byte] ;sensor 2 or 3 
 [bra sensor-dispatch2] 
 [btsc 0 receive-byte] ;sensor 0 or 1 
 [bra read-sensorb] 
 [bra read-sensora] 
sensor-dispatch2 
 [btsc 0 receive-byte] 
 [bra read-sensord] 
 [bra read-sensorc] 
 
sensor-return 
 [lda sensor-reading] 
 [sta transmit-byte] 
 [bsr serial-tyo]  
 [bra loop] 
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read-sensora 
 [ldan 1] ;chselect0 + adon 
 [bsr get-sensor] 
 [bra sensor-return] 
 
read-sensorb 
 [ldan 9] ;chselect1 + adon 
 [bsr get-sensor] 
 [bra sensor-return] 
 
read-sensorc 
 [ldan $11] ;chselect2 + adon 
 [bsr get-sensor] 
 [bra sensor-return] 
 
read-sensord 
 [ldan $19] ;chselect3 + adon 
 [bsr get-sensor] 
 [bra sensor-return] 
 
read-sensore 
 [ldan $21] ;chselect4 + adon 
 [bsr get-sensor] 
 [bra sensor-return] 
 
get-sensor 
 [sta adcon0]  ; turn on converter 
 [ldan $19] [bsr delay-loop] ; wait 100 microsec acquisition 
time 
 [bset adgo adcon0]  ; start the conversion 
sens20 [btsc adgo adcon0][bra sens20] ; wait until done 
 [lda adresh][sta sensor-reading] ; read and return the result 
 [rts] 
 
midi-dispatch 
 [btsc 0 receive-byte] 
 [bra midi2-dispatch] 
 [bra midi3-dispatch] 
 
midi2-dispatch 
 [bsr serial-tyi] 
 [lda receive-byte] 
 [bsr midi-out] 
 
 [bsr serial-tyi] 
 [lda receive-byte] 
 [bsr midi-out] 
 
 [bra loop] 
 
midi3-dispatch 
 [bsr serial-tyi] 
 [lda receive-byte] 
 [bsr midi-out] 
 
 [bsr serial-tyi] 
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 [lda receive-byte] 
 [bsr midi-out] 
 
 [bsr serial-tyi] 
 [lda receive-byte] 
 [bsr midi-out] 
 
 [bra loop] 
 
serial-tyi 
        [clr rcreg] 
        [bclr rcif pir1]        ; clear the flag bit  
        [bset cren rcsta] 
s-tyi-mid 
        [btss rcif pir1][bra s-tyi-mid] 
        ; read is complete 
        [lda rcreg] 
        [sta receive-byte] 
        [clr rcreg] 
        [bclr oerr rcsta] 
        [rts] 
 
serial-tyo 
        [bset bankl status] 
        [bset txen txsta] 
        [bclr bankl status] 
        [lda transmit-byte][sta txreg] 
        [bset cren rcsta] 
        [rts] 
 
midi-out 
 [sta t1] 
 [bclr tx tx-port] 
 [ldan 14][bsr delay-loop] 
 [bsr so][bsr so][bsr so][bsr so] 
 [bsr so][bsr so][bsr so][bsr so] 
 [bset tx tx-port] 
 [ldan 14][bra delay-loop] 
 
so [ror t1] 
 [bclr tx tx-port] 
 [btsc 0 status] 
 [bset tx tx-port] [nop] [nop] [nop] 
 [ldan 13] 
delay-loop 
 [addn -1][btss z status][bra delay-loop] 
 [rts] 
        
io-init 
        [bclr bankh status] 
 
        [bset bankl status]     ;select bank 1 
 
        ; Init baud rate for USART Synchonous master 
        ;[ldan 25][sta spbrg] ; 9600 baud on 4MHz xtal 
 [ldan 51] [sta spbrg] ; 9600 baud on 8MHz xtal 
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        ; Enable port 
        [bclr sync txsta][bset brgh txsta] 
  
 [ldan $00] [sta adcon1] ; set ra0,ra1,ra2,ra3,ra4 to analog 
 
        [bclr bankl status] 
        [bset spen rcsta] 
        [bset bankl status] 
 
        [bset csrc txsta] 
 
 [bclr tx tx-port] 
 
 [bclr led-pin led-port] 
 [bclr bus bus-port] 
 
        [bclr bankl status]     ; back to bank 0 
 
 [bset bus bus-port] 
 [bset tx tx-port] 
 
        [clr transmit-byte] 
        [clr receive-byte] 
 
 ; set to read port? 
 [ldan bus-port-ddr][sta @@] 
 [bclr bus bus-port] 
 [bclr bus @] 
 ;[bset bus bus-port] 
 [bset bus @] 
 
        [rts] 
 
; The following subroutine is the 8MHz version of the standard bus 
; data receiving subroutine.  The form of a byte is 100 usec low time 
; (to allow for interupt latency) start bit(1) + 8 data bits + stop  
; bit (0 for cmnd 1 for data).  Each bit is exactly 10 usec long, but 
; the value is valid only for the last eight microseconds.  This code 
; samples the bits between 3 and 5 us into each bit.  This allows for 
; an interrupt to delay the routine by up to 4.5us and still allow the 
; data to be received.  The subroutine was tested with delays of 9  
; instruction cycles and removal of one delay instruction; if the delay 
; is 10 instructions or two delay instructions are removed, the data 
; may not be received correctly.  The data is returned in bus-data. 
; The inverse of the stop bit is returnted in the carry bit 
; commands have a 0 stop bit -> carry set 
; data has a 1 stop bit -> carry clear 
; 21 July 1999   Jan Malasek 
 
bus-tyi ;[bset led-pin led-port] 
 [btsc bus bus-port][bra bus-tyi] 
btyi20 [btss bus bus-port][bra btyi20] ; for sync edge 
 [ldan 8][sta counter] 
 [bsr an-rts] 
 [bsr an-rts] 
 [bsr an-rts] 
 [bset led-pin led-port]; [nop] 
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btyi30 [nop][nop][nop] 
 [nop][nop][nop] 
 [ror bus-data] 
 [bclr 7 bus-data] 
 [btsc bus bus-port] 
 [bset 7 bus-data] 
 [bsr an-rts] 
 [nop][nop][nop] 
 [decsz counter] 
 [bra btyi30] 
 [bsr an-rts] 
 [bsr an-rts] 
 [bclr led-pin led-port] ; <-- test thingy 
 [bset c status] 
 [btsc bus bus-port][bclr c status] ; no stop bit -> carry clear 
an-rts [rts] 
 
bus-tyo 
 ; set to write port 
 [ldan bus-port-ddr][sta @@] 
 [bclr bus bus-port] 
 [bclr bus @] 
 
 ; go low for 100 us sync time 
 [bclr bus bus-port]  
 [ldan 50] [bsr delay-loop] 
 
 ; send start bit 
 [bset bus bus-port] [nop] 
 [bsr bus-delay] 
 [bclr bus bus-port] 
 
 ; send bit 0-7 
 [btsc 0 transmit-byte] 
 [bset bus bus-port] 
 [bsr bus-delay] 
 [bclr bus bus-port] 
 
 [btsc 1 transmit-byte] 
 [bset bus bus-port] 
 [bsr bus-delay] 
 [bclr bus bus-port] 
 
 [btsc 2 transmit-byte] 
 [bset bus bus-port] 
 [bsr bus-delay] 
 [bclr bus bus-port] 
 
 [btsc 3 transmit-byte] 
 [bset bus bus-port] 
 [bsr bus-delay] 
 [bclr bus bus-port] 
 
 [btsc 4 transmit-byte] 
 [bset bus bus-port] 
 [bsr bus-delay] 
 [bclr bus bus-port] 
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 [btsc 5 transmit-byte] 
 [bset bus bus-port] 
 [bsr bus-delay] 
 [bclr bus bus-port] 
 
 [btsc 6 transmit-byte] 
 [bset bus bus-port] 
 [bsr bus-delay] 
 [bclr bus bus-port] 
 
 [btsc 7 transmit-byte] 
 [bset bus bus-port] 
 [bsr bus-delay] 
 [bclr bus bus-port] 
 
 ; command bit? 
 [btss 7 bus-code] 
 [bset bus bus-port] 
 [bsr bus-delay] 
 [bclr bus bus-port] 
 
 ; stop bit 
 [nop] [nop] [nop] 
 [bsr bus-delay] 
 
 ; command bit maintanence 
 [bclr 7 bus-code] 
  
 ; set to read port 
 [bset bus @] 
 
 [rts] 
 
bus-delay ; to get 10 us bits on bus line 
 [ldan 2] 
 [bsr delay-loop] [nop] 
 [rts]
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Appendix C: MICK User Manual 

 This appendix provides a brief instruction manual for using MICK with 

descriptions of the many effects that can be produced. 

 Getting Started.  When MICK is started a screen with a large logo will appear.  

Before starting an instrument it is a good idea to test that the Serial Interface and MIDI 

are working properly.  To do this, select Test Midi from the Instrument menu.  You 

should then hear a note played through the MIDI.  If this does not work, check that power 

is supplied and that the interface is connected to the PocketPCTM. 

 Now, select New from the File menu.  (Note: you could also open a previously 

saved file by using the Open command.)  When you start this new instrument a dialog 

box will appear asking what type of sensor you would like to add as the first sensor in 

your instrument.  Choose the appropriate sensor from the options displayed.  Once the 

first sensor has been selected, the main screen will display the sensor as an icon, with 

associated options and information displayed in a row across the screen.  The icons that 

represent the different sensors are: 

 
Touch                    Light                 Temperature            Distance  

 

  

 Setting the Location 

To set the location of a sensor, click on the gray box immediately to the right of 

the sensor icon.  A dialog box will appear where the sensor’s location can be specified in 
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terms of bus location and port number.  For bus device sensors like a distance sensor, 

leave the port field set to 0.  

 Setting the MIDI voice and channel 

 The next box to the right of the location box allows the MIDI voice associated 

with the sensor to be selected.  Clicking on that icon will open a dialog box in which you 

can set the channel and voice for the instrument.  Note that modifying the voice used by 

some channel will affect all sensors that use that channel. 

 Deleting a Sensor 

 On the far right of the screen is a box with an “X”.  Clicking on this box will 

remove the sensor and all its actions from the instrument.  To add a new sensor, select 

Add Sensor from the Instrument menu. 

 

 Adding Sensor Actions.  The remaining icons that have a “+” symbol contained 

inside them allow you to add actions and musical effects to the sensor.  Clicking on one 

of these icons will open a dialog box that allows the action to be specified in detail. 

 Playing Notes and Chords 

 The first action allows for the playback of notes or chords.  When the dialog box 

opens there are two main sections.  At the top are boxes that allow the range to be 

specified.  Use these boxes to specify the values inside which this action to occur.  For 

example, if the range is from 100 to 200, the note/chord will be played if the sensor’s 

value is in that range.  To add a note to be played click the add note button.  To move 

between notes click on the next button.  A selected note can be removed by clicking the 
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delete note button.  To modify the pitch of the selected note click on raise pitch or lower 

pitch.  Finally, at the bottom of the dialog is a check box where the root pitch can be 

played.  The root pitch is a special note that can be modified by other actions.  The shift 

pitch action described next will talk more about this effect in detail.  When finished 

modifying the note, click the ok button in the top right corner of the screen.   

Once you leave the dialog box a new row of icons will appear indented 

underneath the sensor you added the action.  This indention will allow you to identify 

which actions are associated with what sensors.  To modify the actions later click on the 

icon at the left of the actions row. 

 Shifting the Root Pitch 

The next action that can be added (represented with a sliding note) allows the root 

pitch to be modified.  Again the first part of the dialog box allows the range for this 

action to occur.  The rest of the dialog allows the direction and amount of the shift to be 

specified.  The root pitch itself is specified from the selection Root pitch in the Instrument 

menu. 

 Playing Wave Files 

The next action allows a wave file to be specified for playback.  Again enter the 

range, as well as the name of the wave file to play back.  The wave file will be played 

through the internal speaker in the PocketPCTM. 

 Activating Motors,  Displays,  and Tri-color LEDs 

The three actions after playing wave file are all used for non-musical output.  

These actions allow the interface to activate motors, displays, and tri-color leds, 
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respectively.  In these dialog boxes, as the others, select the range for the action to occur 

first.  Next, since all these devices are bus devices, select their bus location.  Finally the 

specifics of the action, either motor direction or display detail, are entered.  Again, click 

ok to finish. 

 Executing Scripting Commands 

The icon with a turtle is intended for future use.  It will allow scripting commands 

to be specified. 

 Performing Functional Mappings 

The final action (picturing a graph) allows mathematical mappings to be 

specified.  After selecting the range, select the type of function to use.  The two values m 

and b will be used as described in the table 3.  At the bottom of the screen it is possible to 

select the type of outputs.  You may choose from note, volume, display, and led 

mappings. 

Function Relationship to m and b 
 
          Linear 
 

 
y = m * x + b 

 
 
          Inverse 
 

 
y = m / x + b 

 
 
          Square 
 

 
y = m * x2 + b 

 
 
          Square Root 
 

 
y = m * sqrt(x) + b 

 
Table 3: Mapping Functions 

 

 



 56 

Playback and Finishing Up.  Once the instrument has been set up with sensors 

and actions its operation can be started by selecting Run from the Instrument menu.  The 

instrument can also be saved using the options under the File menu.  It is likely that an 

instrument will have more sensors and actions specified than will fit on the screen of the 

PocketPCTM.  If this occurs, use the scroll up and scroll down buttons to move the sensors 

and actions that are currently displayed. 
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Appendix D: MICK Scripting Primitives 

In order to allow a series of actions to be performed on a single sensor event, 

MICK could allow users to program in a logo-like language.  This language can perform 

all the state-setting actions that MICK provides, such as playing a note or turning on a 

motor, in a series of commands that may include timing delays, repeated sequences, or 

other control structures.  Procedures may be declared as well.  A sample set of 

instructions is given in table 3 below. 

In order to allow sensor events to be able to trigger several interleaving series of 

MICK-Script sequences it is necessary to implement some form of multi-threading.  To 

accomplish this objective, each sensor event is given its own queue for scripting 

commands.  When that sensor event is triggered, the commands the user has connected 

with that event are added to that sensor event’s queue.  On each pass over the sensors 

while the instrument is running, each queue executes one instruction.  To help avoid 

memory overflows due to recursive calls, instructions could be executed in a lazy 

manner.  That is, a call to a procedure will not be expanded on the queue until that 

procedure call is reached.  Notice, however, that MICK does not provide any strong 

assurances on the safety of the command sequences.  If one thread sets a motor and then a 

different thread sets the motor to a different value.  The most recent setting will win.  

Therefore, users must use care in using such a scripting feature. 
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Scripting Primitive Explanation 
To proc-name (:arg1 :arg2 …) 
    body 
end 

Creates a procedure named proc-name.  
This procedure may receive arguments 
named by variables starting with colons in 
the declaration.  The body of the procedure 
is included before the end keyword. 

Repeat num [ body ] Repeats instructions in body of repeat 
statement num times. 

if cond [ body ] Tests the condition cond.  If the value of 
cond is true, body is executed. 

Ifelse cond [ body1 ] [ body2 ] Tests the condition cond.  If the value of 
cond is true, body1 is executed, otherwise 
body2 is executed. 

Wait num Does not perform an instruction for num 
instructions.  (skips instruction cycles) 

Display num Displays number num on display bus 
device. 

Sensor0 Returns the value of sensor in port 0. 
Sensor1 … sensor7 Returns the value of sensor in port 1 - 7. 
Sensor color port Returns the value of sensor in port port on 

color color sensor port bus device. 
Motor color port direction power Sets motor in port port on color color 

motor bus device to direction direction and 
power power.  direction is 0 or 1.  power is 
0-7 

Note-on pitch channel … 
Melody filename … 
Clear-thread Clear this sensor-event’s thread 
+ - * / Basic mathematical operators. 
etc. etc. 

Table 4: MICK Scripting Primitives 
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Appendix E: MIDI Instruments and Effects 

This appendix provides tables of the instruments available on the standard MIDI 

channels (1-9 and 11-16), as well as a listing of the drum sounds for channel 10, which is 

restricted to those drum events, followed by descriptions of the variety of MIDI effects. 

PC#  Instrument name PC#  Instrument name PC#  Instrument name PC#  Instrument name 

1 Acoustic Grand Piano 

2 Bright Acoustic Piano 

3 Electric Grand Piano 

4 Honky-tonk Piano 

5 Electric Piano 1 

6 Electric Piano 2 

7 Harpsichord 

8 Clavi 

33 Acoustic Bass 

34 Electric Bass (finger) 

35 Electric Bass (pick) 

36 Fretless Bass 

37 Slap Bass 1 

38 Slap Bass 2 

39 Synth Bass 1 

40 Synth Bass 2 

65 Soprano Sax 

66 Alto Sax 

67 Tenor Sax 

68 Baritone Sax 

69 Oboe 

70 English Horn 

71 Bassoon 

72 Clarinet  

97 FX 1 (rain) 

98 FX 2 (soundtrack) 

99 FX 3 (crystal) 

100 FX 4 (atmosphere) 

101 FX 5 (brightness)  

102 FX 6 (goblins) 

103 FX 7 (echoes)  

104 FX 8 (sci-fi) 

9 Celesta 

10 Glockenspiel 

11 Music Box 

12 Vibraphone 

13 Marimba 

14 Xylophone 

15 Tubular Bells 

16 Dulcimer 

41 Violin 

42 Viola 

43 Cello 

44 Contrabass 

45 Tremolo Strings 

46 Pizzicato Strings 

47 Orchestral Harp 

48 Timpani 

73 Piccolo  

74 Flute 

75 Recorder 

76 Pan Flute 

77 Blown Bottle 

78 Shakuhachi 

79 Whistle 

80 Ocarina 

105 Sitar 

106 Banjo 

107 Shamisen 

108 Koto 

109 Kalimba 

110 Bag Pipe 

111 Fiddle 

112 Shanai 

17 Drawbar Organ 

18 Percussive Organ 

19 Rock Organ 

20 Church Organ 

21 Reed Organ 

22 Accordion 

23 Harmonica 

24 Tango Accordian 

49 String Ensemble 1 

50 String Ensemble 2 

51 Synth Strings 1 

52 Synth Strings 2 

53 Choir Aahs 

54 Voice Oohs 

55 Synth Voice 

56 Orchestra Hit  

81 Lead 1 (square) 

82 Lead 2 (sawtooth) 

83 Lead 3 (calliope) 

84 Lead 4 (chiff) 

85 Lead 5 (charang)  

86 Lead 6 (voice) 

87 Lead 7 (fifths)  

88 Lead 8 (bass + lead) 

113 Tinkle Bell 

114 Agogo 

115 Steel Drums 

116 Woodblock 

117 Taiko Drum 

118 Melodic Tom 

119 Synth Drum 

120 Reverse Cymbal 

25 Acoustic Guitar (nylon) 

26 Acoustic Guitar (steel) 

27 Electric Guitar (jazz) 

28 Electric Guitar (clean) 

29 Electric Guitar (muted)  

30 Overdriven Guitar 

31 Distortion Guitar 

32 Guitar Harmonics 

57 Trumpet  

58 Trombone 

59 Tuba 

60 Muted Trumpet  

61 French Horn 

62 Brass Section 

63 Synth Brass 1 

64 Synth Brass 2 

89 Pad 1 (new age) 

90 Pad 2 (warm) 

91 Pad 3 (polysynth) 

92 Pad 4 (choir) 

93 Pad 5 (bowed) 

94 Pad 6 (metallic) 

95 Pad 7 (halo) 

96 Pad 8 (sweep) 

121 Guitar Fret Noise 

122 Breath Noise 

123 Seashore 

124 Bird Tweet 

125 Telephone Ring 

126 Helicopter 

127 Applause 

128 Gunshot 

Table 5: General MIDI Melodic Voices 
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Note Drum Sound Note Drum Sound 
B0 Acoustic Bass Drum B2 Ride Cymbal 2 
C1 Bass Drum 1 Middle C (C3) Hi Bongo 
C#1 Side Stick C#3 Low Bongo 
D1 Acoustic Snare D3 Mute Hi Conga 
Eb1 Hand Clap Eb3 Open Hi Conga 
E1 Electronic Snare E3 Low Conga 
F1 Low Floor Tom F3 High Timbale 

F#1 Closed Hi-Hat 1 F#3 Low Timbale 
G1 High Floor Tom G3 High Agogo 

Ab1 Pedal Hi-Hat 1 Ab3 Low Agogo 
A1 Low Tom A3 Cabasa 
Bb1 Open Hi-Hat 1 Bb3 Maracas 
B1 Low Mid Tom B3 Short Whistle 
C2 Hi Mid Tom C4 Long Whistle 
C#2 Crash Cymbal 1 C#4 Short Guiro 
D2 High Tom D4 Long Guiro 
Eb2 Ride Cymbal 1 Eb4 Claves 
E2 Chinese Cymbal E4 Hi Wood Block 
F2 Ride Bell F4 Low Wood Block 

F#2 Tambourine F#4 Mute Cuica 
G2 Splash Cymbal G4 Open Cuica 

Ab2 Cowbell Ab4 Mute Triangle 
A2 Crash Cymbal 2 A4 Open Triangle 
Bb2 Vibraslap   

Table 6: General MIDI Percussion Sounds (channel 10) 
 
 
 
 

Effect Description 
Modulation Wheel Used to control pitch modulation (vibrato) level on a specified channel 

 
Volume Used (in conjunction with Expression) to control overall volume of notes 

on a specific channel 
 

Pan Used to control left/right output placement for notes on specified channel 
 

Expression Used (in conjunction with Volume) to control overall volume of notes on 
a specific channel 
 

Damper Pedal (Sustain) Allows notes on a specified channel to continue sounding after the 
corresponding notes have been released.  Notes are terminated when 
damper pedal is turned off. 
 

Sostenuto Similar to Damper Pedal, except Sostenuto only effects note which were 
already active when Sostenuto is turned on. 
 

Effect 1 Depth (Reverb) Used to adjust the amount of reverb effect applied to sounds played on a 
specific channel 
 

Effect 2 Depth (Chorus) Used to adjust the amount of chorus effect applied to sounds played on a 
specific channel 

Table 7: General MIDI Effects 


