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ABSTRACT

A growing body of educationd research has shown that children learn mogt effectively
when they are engaged in designing and condructing things thet are persondly
meaningful to them. Consequently, the chalenge facing many researchers and
practitioners has been to design adiverse collection of construction kits that support
learning about many powerful intellectual and artistic idess. In this thesis we report on
the design and the implementation of atoolkit, called MICK, geared towards rethinking
music education. MICK isamusica instrument congtruction kit that enables novices,
particularly children, to design and build their own musical instruments. The eectronics
components and software toolsin MICK make it possible to rapidly prototype awide
variety of ingruments and other devices. The process of congtructing amusica
ingrument with MICK aso provides learners with many authentic opportunities for
exploring and reflecting on important mathematica, scientific, and engineering idess.
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“ Better learning will not come from finding better ways for the teacher to
instruct, but from giving the learner better opportunities to construct.”

-Seymour Papert



1 Introduction

Support for music and theater arts education continues to decline. Many key
decison-makersin educationa systems worldwide bolster support for mathematics,
stience, and technology curricula at the expense of music and theater arts programs.
However, there are many compelling reasons for protecting the arts education in our
schools. Firg, the arts are an important form of human expression in and of themselves.
Second, the arts have degp connections with and are complementary to the more abstract
ways in which we as humans describe and make sense of the world around us. Third, the
arts have been one of the mgor driving forces behind many technologica advancements.
Findly, children's deep interest in music and the arts provides an authentic context for
introducing them to many important ideas in mathematics, science, engineering and
design.

These observations present us with both a challenge and an opportunity. The
chdlengeisto find good ways of preserving whet is best about the arts education while
addressing the growing need for cultivating a technologica fluency in our children. On
the other hand, we have the opportunity to use technology to give children the tools they
need to create not only their own art but also their own tools for creating art. In fact, the
results from alarge body of research from the constructionist learning community> 1213
have shown that children learn most effectively when they are engaged in cregting things
that they care about. One of the principle components of the research methodology in
this community has been to create and evauate congtruction kits and support materias
that provide children with multiple new paths for making sense of the world and

expressing themselves.



Following in the congtructionist tradition, the research presented here focuses on
the design and implementation of a congtruction kit for making awide variety of musicd
ingruments. A key observation underlying this thesisis that gppropriate uses of
technology can provide children with learning experiences that would fundamentaly
chalenge our assumptions and our stance towards music education.

A closer look at this congtruction kit would be helpful in getting a better sense of
the types of learning opportunities it provides. Let us congder an activity in which
children build their own musical insruments. In this environment wefill the learners
toolkit not only with treditional materias like wood and string, but with abroad set of
electronic sensors capable of detecting touch, light, temperature, distance, motion, sound,
etc. Moreover, we provide a software tool that alows users to easily map the input from
the sensorsto musica output. This environment provides not only the traditiond
Characterigtics of amusicd activity, but also helps the user learn design kills, gain
technologica fluency, engage in degper socid interaction, and connect to important ideas
in musc, science, and engineering.

While there are many smilarities between congructing an instrument from basic
materials and congdructing an instrument that also includes technologicd tools, the most
ggnificant trade-off exists in moving from acoudtica to digitaly creasted sounds. For
example, in congructing a xylophone from wood the designer will need to work very
hard to insure that each key of the xylophone is the correct size for the pitch it isintended
to produce. This physicd requirement issmilar for other basic instruments like a guitar,
where the tightening of the stringsisthe crucid dement. Once the builder movesto
using a st of eectronic sensors the physical details change sgnificantly. For example,

the designer might replace axylophone key with atouch sensor. Now, the most
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important dement is not the exact Sze of the key but how the key is struck. The output
pitch can easily be set in software to create the correct musical output. 1n essence, the
designer must look at the quantitative values that exist in playing the instrument (what
vaue does the sensor read when | dtrike it?), not just the intuitive quantitative properties
that exist in atraditiona instrument (if | hit the sensor hard the note isloud). By
congdering this additional eement, the user can explore a set of musica mappings that
are not redtricted by the basic materids available. Moreover, the builder can engagein
thinking about properties that go beyond intuitive physical relaionships and use them to
augment traditional properties.

By usng this advanced musicd instrument congtruction kit, the user can explore
not only representations for musica instruments but aso methods for representing
musica ideas and music compostions. We could even consder an example where the
ingrument can reaed through music autonomoudy, though in a different representation
than sheet music. One such example might center on a car-like insrument that drives
over colored pieces of tape. Each color could represent a different note to the car. Asthe
car drives over that color it sustains the pecific pitch for aslong asit isdriving over that
color. Thusacomposer of apiece of music for thismusica car would write his melody
in the colored tape. Beyond this one example it is possible to imagine many other
musical representations that are very different from traditiond musical notation. This
relm of possbilities provides the potentia for many rich learning opportunities that do
not amply fit into any one traditiond discipline.

In utilizing this a more advanced toolkit for building instruments, the learner will
become involved in exploring important idess in engineering and gain technological

fluency. Intheinteraction with sensors aone, the user will need to begin thinking about
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scientificideas. In using alight sensor, for example, the designer will need to explore the
types of vauesthat the sensor returns. After experimenting with the behavior of the
sensor, they will need to decide what valueis agood divider between values that mean
“light” and vauesthat mean “dark”. They might decide to divide the returned sensor
vauesinto severd smdl rangesto provide more detall. All of these smple interactions
are important in learning about engineering and design decisons. Also, these eectronic
elements are probably common in alot of ements the learner sees outside of this
activity. Hopefully they will start to think about the ways they interact with other objects
and what types of sensors are involved in those interfaces. Through this continued cycle
of design, congtruction, and reflection, learners will build confidence in scientific and
engineering techniques. They will develop intuitions about which uses are most effective
for particular sensors, building materids, and functional mappings.

In congderation of using thistool in aclassroom seiting, it isworthwhile to
briefly examine how activities with thistoolkit may be incorporated into the available
timeinacurriculum. When it is necessary to fit the activities into alimited amount of
time, it may be best to limit the breadth of the activity on any given day but work hard to
maintain a continuity from day to day if the activity can be extended to multiple days. In
asngle short session, learners could delve into one specific agpect of the toolkit related
to current work in aclass. For example, an activity in a science classroom might examine
how to build a sensor out of unusua materids and incorporaeit into amusica
instrument built with the toolkit. When there are less time redtrictions, users could be
permitted to explore the toolkit in whichever directions they choose. In creeting their

ingruments, students would need to find solutions to specific implementation problems



they encounter. In doing 0, their desire to make their instrument perform wdl will drive
their exploration of the underlying tools and scientific ideas that are needed.

The previous discussion has been the driving force for desgning anew
computationa toolkit for music education. This document will detail the design rationde,
implementation, evaluation, possble uses, and future directions of aMusicd Instrument
Congtruction Kit (MICK) through four chapters. The first of these chapters will describe
asample scenario that reflects the type of interaction we fed is possible based on the
features of the tool and the activities we have observed. The next chapter provides a
technical description of both the software and hardware components of MICK. Inthe
third chapter, results from workshops and feedback sessions are described. We look at

future directions for MICK in the last chapter.
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2 Scenario

To hdp illugrate the type of interaction envisioned between a child and this new
musica instrument congtruction kit we will develop a scenario in which a child usesthe
toalkit. In this example a child named Mick will explore building amusicd ingrument
and then share the musica instrument he has crested with his classmates at school.

Mick begins by opening his toolkit and seeing what types of objects areinside.
He finds an assortment of sensors, an interface to connect the sensors to his computer,
and software that enables him to program how his musica ingruments will work. Mick
decides that he will look at afew of the examples provided in abooklet that came with
the kit before deciding exactly what he wantsto build. The first example shows how to
build a sat of bongos. Each of the two drumsis created from alight sensor. When the
light sensor is covered the drum sounds.  This simulates the action of striking ared drum.
After building and playing the bongos for a short time, Mick changes the sounds the
drums are producing to different drum sounds. He tries cymbals and other drums. Mick
next looks at one other example—asmdl piano. Each key in the piano uses atouch
sensor. When the sensor is pressed, anote is played for that key. While exploring this
example, Mick decides to change the notes that the piano playsto a different scale. Then
Mick gets another idea. He records his voice saying different words and replaces the
notes with his recorded voice. Now he can form sentences by pressing the keysin the
right order.

After playing with these two example instruments, Mick now feelsready to creste
his own indrument. He decides that he will try using a distance sensor and map the value
of that distance sensor to amusicd pitch. While experimenting with different ranges and

14



different MIDI voices, Mick decidesto only have the notes play when he blowsinto a
wind velocity sensor. Now when he blows into the sensor, a noteis played based on the
value of the distance sensor. This correlation reminds Mick of atrombone so he decides
to change the MIDI voice to atrombone sound. Findly, Mick decidesto add volume
contral to hisingrument. He maps the wind velocity sensor to the volume of the output
30 he can play loudly by blowing hard or play softly by blowing lightly. After alittle bit
of decoration, Mick fedsthat hisinstrument is complete.

Mick isproud of the instrument he has made and decidesto take it to school and
to show it to his classmates a school the next day during show and tel. During his
presentation, Mick talks about his insirument and how he expanded it from one sensor to
two. He taks about choosing the right sensor values for his instrument and how the
vaues map to musica output. After he shows hisingrument, the class talks about the
interfaces that different instruments have. They aso talk about how they interact with
other objects besides musica ingruments and how other types of interfaces are designed.

After school that day, Mick returns home inspired to build a new sensor for usein
amusicd insrument. By connecting two wires to a piece of fresh Play-Doh™ 1, Mick is

ableto measure aresistive vdue. As he sculpts the Play-Doh™

, Mick is able to change
the value. Much like his previous ingrument, Mick maps this vaue to amusicd pitch.
However, due to the novel nature of the Play-Doh™ instrument, Mick would like to
cregte a specia way for notating songs he will play on the instrument. Mick decidesto
write the music much like amathematicd plotting. The vaue of the drawn function

hTM

represents how “ squeezed” the Play-Doh’ ™ in the instrument gppears a each point. This

representation alows Mick to play through his song by executing the correct pattern of
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sgueezes, Mick does not even need to know the details of standard musicd notation in
order to play the songs he writes. He has created his own independent representation.

The Scenario above presents many different types of interactions between Mick
and the toalkit, yet the ideas for these sample interactions did not come from a vacuum.
The workshops conducted as a part of this research, as well as other feedback and
ingpiration from other Media Lab groups, directly demonstrated or strongly anticipated
al of these types of interactions. Reading through the remainder of this document, the
reader may find it helpful to keep in mind the broad range of interactions that are

possible, and how these interactions can positively affect learning.
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3 Design Evolution and Implementation

The musicd instrument construction kit (MICK) developed out of previous work
donein the Epistemology and Learning Group and the Lifelong Kindergarten Group a
theMIT MediaLab. Expanding on workshops® done with asmall programmable device
called aCricket®®, initia prototypes utilized a desktop environment that contained tools
for writing musica compodtions and programming musica insruments that contained
Cricket sensors and devices. After those beginning efforts, the project was revamped to
utilize the PocketPC™ ** as both a programming environment and controller for the

musca insruments.

3.1 Background Work

Thefirg ideas for the musica instrument congtruction kit evolved from earlier
work done with the Cricket. The Cricket itself isasmall computer only dightly larger
than, and powered by, a 9-volt battery. A single Cricket is capable of powering two
LEGO motors, monitoring two sensors, and controlling severa additional devices.
Crickets can aso communicate with other Crickets or a computer interface using infrared
light. A didect of the Logo programming language is used to program the Crickets. The
language includes procedure cdls, smple control structures, and standard numeric
operations. Logo aso has functions for motors, sensors, timers, and playing tones.

There have been several expansonsto the basic Cricket aswell. The selection of
sensors, once including only light and touch sensors, now provides sensors to detect

temperature, reflectance, acceleration, and more. In addition, expansion devices are
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available which can be plugged into the Cricket’ s bus ports. One such device provides
additiond inputs for sensors, dlowing four additiona sensors per device beyond the

origind two.

Figure 1: The Cricket

One recently created bus device that is especidly useful for a Cricket based
musica instrument is the Musical Instrument Digital Interface (MIDI) bus device'®. With
a st of primitive commands the Cricket can play musica notes using slandard MIDI
voices and channds, just like amusica synthesizer. MIDI commands are more
complicated than other basic Logo commands and that makes MIDI programs much more
difficult to write. More information about the Cricket may be found in Appendix A.

More information on MIDI features may be found in Appendix E.

Figure 2: A Cricket with Bus Devices
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Some software tools have been written to ad in Logo programming. An
applicatior? written in the Microworlds™ ° environment is currently the standard
environment for programming the Cricket. It offers acommand center interface for
running code one ingruction at atime aswell astools to load longer user programs onto
the Cricket. LogoBlocks"’, another tool, provides avisud programming environment in

which Logo commands and control structures are represented and manipulated as

graphica blocks. A sequence of ingtructionsis created be * sngpping” the blocks together.

However, neither of these tools currently has an easy method for programming MIDI
commands.

This conflict between the common desire to build amusical instrument with the
Cricket and the lack of an effective tool for creating a musica instrument became evident
at anumber of workshops with the Crickets. Although it was possible to build the
ingruments, the complexity needed to be relatively low and the time required to complete

the instruments was often large.

3.2 Initial Prototype

The development of MICK began by focusing on improving the way in which a
Cricket musicd ingtrument was programmed. The new toolkit aimed a providing a
ampleinterface for achieving musicad effects. Thefirgt part of the project amed at
creating an environment for writing music compositions for playback onthe Cricket. The
second part of the project developed a graphica environment for programming a Cricket
to behave like amusicd instrument. Both of these eements were origindly aimed at the

desktop environment.
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The meody editor provides a graphica interface for writing musicd scoresin
standard notation. The user can select notes and markings from a palette and place them
on adaff. Thetool handles spacing the notes appropriatey and positioning markings and
notation in the appropriate place. The playback of the score can aso be modified to use

any set of MIDI voices. Once finished the melodies can be outputted as L ogo code that

can then be loaded onto a Cricket and be played back.
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Figure 3: Melody Editor Screenshot

The more gnificant helf of the project was the instrument editor. The instrument

editor alows the user to map sensor actions to musica output and other MIDI effects.

For each sensor, the user can define arange for the effect to occur. When the sensor’s

vaue enters that range, the musical effect occurs. This effect could be playing anote or a

chord, playing ameody, or performing some other Cricket action like turning on a

motor. Though it was possible to quickly design an instrument with this interface, the

Cricket suffered from alack of processng power and a severe bottleneck in

communication with the connected devices. Therefore, a new solution was developed in

which the processing of the Cricket would be replaced with a PocketPC™ . In addition a
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new interface would be designed to allow the PocketPC™ to communicate with the same
devices asthe Cricket. These improvements were completed for the current version of

MICK described below.

3.3 TheMICK Environment

Thefull verson of the project is cdled the Musicd Instrument Congtruction Kit
(MICK). It uses the PocketPC™ rather than the desktop as the main working platform.
To enable the PocketPC™ to work with the Cricket’s sensors, motors, and bus devices a
gpecid Serid Interface was designed. Theinitid instrument creetion software created for
the desktop was recreated and improved in aversion for the PocketPC™. The melody-
editing tool remained fairly untouched, though it was modified to download melodies to
the PocketPC™.

In order to alow the PocketPC™ to connect with Cricket sensors and bus devices,
anew interface needed to be made with the PocketPC™’ s native serid port. This
interface would need to receive bytes from the PocketPC™ that specify actions for the
interface to perform, like checking a sensor’ s value, and then send bytes back with the
specified result. There were three such actions that the interface needed to implement:
sensor checks, midi commands, and bus commands.

The top two hits of each byte specify the action type; the remaining six bits
contain information relevant to that command. For sensor checks, the low bits describe
the sensor port to check. That port is checked and the value isreturned in abyte. For a
MIDI command the low bits specify how many MIDI ingructions of one byte each,

ather two or threeg, will follow. Commands for bus devices use the lower bits to describe

21



how many bytes will be sent to the bus device, and then how many bytes will be read

back to the PocketPC™.

Command Type

Byte Appearance

Comments

Sensor Check

00XXXPPP

PPPisthreebitid (0-7) of
the sensor port to check.
For example, ‘00000010
means check sensor port 2.

MIDI

01 XXXXXB

B is number of bytesin the
MIDI command:
0 = 3 byte command
1 = 2 byte command

Bus Device

10RRRSSS

RRR and SSS are 3 hit
vaues (0-7). SSSisthe
number of bytesto send to
the bus device. RRR isthe
number of byte to receive

from the bus device.

Table 1: Serial Interface Byte Commands

Sensor ports on the Serid Interface provide ports identical to the ports on the
Cricket. The interface providesroom for eight sensors directly on the board, though
additiona sensors can be provided with bus devices. Sensor values are calculated using
andog to digita conversion on aPIC™ processor. For complete assembly code, block
diagram, and PCB layout of the interface board see Appendix B.

One problem encountered in connecting the interface to standard Cricket bus
devices was the communication protocol. Whereas the PocketPC™ communicateswith
the Serid Interface using bytes (8 bits each), the Cricket communicates with bus devices
using a9 hit ingtruction, eight bits of data plus an additional command bit. After
synchronizing with the bus device, the Cricket begins by sending a sart bit, one high bit.
Next follows 8 bits of data. The tenth bit of the sgnd isa command bit. This command
bitiszeroif itisthefirgt bit sent to abus device and one otherwise. The last bit sentisa

low bit, the stop bit (see Figure 4).




Figure 4: The Bus Device Protocol® (reprinted with permission)

In order to account for the command bit, the Serid Interface makes the command
bit low for only the first command sent to the bus devices from the Serid Interface. The
eight bits of data are exactly the contents of the bytes sent from the PocketPC™ to the
interface. Theinterface dready knows how many bytes it will send from the origina
command byte (see Table 1 above).

The instrument editor on the PocketPC™ isvery similar to the interface of the
initid prototype for the desktop environment. Sensor vaues may till be mapped to
musica output in the same way. The interface now provides many improvements over
the origind prototype. In addition to MIDI output, sounds recorded as wave files can
also be outputted. Bus devices also provide an additionad method of creating output
whether through motors, displays, are other devices. One additional feature alows
sensor vaues to be mapped through a mathematica function to output.

Because of the number of devices that could be attached to the Serid Interface, it
is criticd that the exact location of those devices be specified. MICK dlowsthe user to

describe where devices are located using smple dialog boxes. For sensors connected to



the interface, naming the port isdl that isrequired. For bus devices, the type and
coloration of the bus device (red, blue, yelow, or white) is aso needed.

The sensor ports on the Seria Interface to the PocketPC™ replicate the ports
exigting on Crickets. Therefore sensor vaues can be treated exactly the sameway asin
the initid prototype. Sensors are divided into two basic categories. toggle and ranged.
Toggle sensors only encompass touch sensors. For these sensors, the vaue returned to
the Cricket isavaue of true or false. Actions may be triggered for either of those two
dates. For example, we might want to say “when touch sensor #1 is pressed then do
some action.”

For ranged sensors, the value returned to the Cricket is an integer in the range
from 0 to 255. For these sensorsit is necessary for the user to specify what vaues will
trigger an action by setting up arange. This range would have an upper and lower bound
within the range 0 to 255. For example, we might want to say “when light sensor #2 is
returning a vaue between 100 and 200 then do some action.”

In the examples above, the “do some action” phrase has not yet been clarified.
The user selectsthe desired actions from a set of optionsthat are displayed, such as
playing anote, playing amelody that was crested in the melody editor, or causng some
MIDI effect to occur. Once the type of action has been sdlected the user then suppliesthe
details of that action. For example, in the case where the user would like a note (or set of
notes to be played), awindow appears where the user enters the notes to be played. If the
user sdlected to play ameody, abox would gppear where the filename for that melody
should be entered.

In addition to MIDI output through a speaker connected to the Serid Interface, the

PocketPC™ includes an internal speaker that alows for additional mediaoutput. The
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mogt direct gpplication of this capability is triggering wave file playback as output. This
feature dlows for many interesting instruments, such as a child cregting an instrument
that outputs sounds recorded from their own voice.

The ahility to use bus devices for additiond output provides awhole new scope
for the type of projects created with MICK. Not only basic musical output may be
performed, but control of motors and other devices. Instead of making merdy amusical
interface, a sudent could create an interface for controlling acar or robot. This
functionality allows MICK to be used as a genera- purpose tool in addition to just a
musicd tool.

One significant festure added in the PocketPC™ that goes outside any featurein
theinitia desktop versgonisatool for creating functiond mappings. In afunctiond
mapping, a sensor’ s value is passed through a mathematical function to return anew
vaue. Itisthe returned value that may then be used for other effects. For example, a
light sensor might be used with a functionad mapping to control the instrument’ s volume,
These mappings do not need to be linear. MICK provides four basic functions for
mappings linear, inverse, square, and square root.

The complete manud for MICK and dl the possible actions it performs with

examplesisgiven in Appendix C.
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4 Evaluation

MICK was demongtrated and used in severa environments to get feedback on its
functiondity and usability. Thisfeedback came from workshops conducted with middle
school children ages eleven to thirteen, as well as through comments from other
researchersinthe MIT MediaLab. Particularly useful feedback was received from

members of the Hyperinstruments Group directed by Tod Machover.

4.1 Workshop Results

The workshop consisted of three main phases. At the beginning, MICK was
introduced to the students through some example instruments and a brief tutorid. Most
of the time in the middle was dedicated to dlowing the sudents to design and build an
instrument from the tools and materias provided. At the end of the workshop each
participant shared the instrument they had created.

The workshop began by introducing the students to two previoudy built
examples. Thefirst example wasasmple piano. The piano conssted of five keys, with
each key having an associated light sensor. The sensor was normaly covered, but when
akey was pressed the light was revedled to the sensor. The piano was set up to play one
section of astandard scae with no specid modifications. The second example was built
to explore the redm of non-traditiond instruments. It consisted of araised rail with a
moving car. Anoptical distance sensor was attached to the car facing downwards, with
enough open space exigting below the car to alow blocks to be stacked to different

heights. Asthe car moved back and forth on the rail, the distance sensor would measure
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the distance to the stack of blocks directly below it and then map that valueto anote. A
tal stack of blocks would result in ahigh pitch, while alow stack of blocks would result
inalow pitch. In addition, the instrument possessed a digplay that showed the vaue the
sensor was reading. The display was useful in debugging the ingrument and explaining

the instruments operation to the students.

e UG SE e

Figure5: Siding Car Instrument

After demondtrating these two instruments, the students were introduced to the
software interface through atutorial. The participants were shown how to start anew
instrument and set the port location for the sensors they added. Next, the students went
through the step-by- step process of setting up alight sensor with different rangesto play
different notes. Following this introductionto MICK, the students began to design and
build their own musical instruments. The crestions of two of the students are described in
detal below.

One of the students, named Andy, was interested in building an instrument that

behaved like aguitar. He began by choosing the type of sensors he wanted to use. Andy



decided touch sensors would work well for emulating the frets of the guitar as well asthe
grings of the guitar. Andy’s next step was building the body of the guitar out of LEGO
building blocks and embedding three touch sensors to represent strings, and two touch
sensors in the neck of the guitar to use for frets. Now it was time to begin programming
the guitar so the sensors would trigger sounds. The first step in programming the guitar
was setting up one of the touch sensors representing astring. Since the default MIDI
voice of the ingrument sounded like a piano, Andy immediately changed the MIDI voice
to sound like aguitar. After thefirst string was ready, Andy programmed the other two
strings two sound &t higher pitches than the firs. Now Andy moved to the frets of the
guitar. With alittle help, Andy learned how to shift the pitch of other notes that were
playing. Using this fegture of the toolkit, he had the touch sensors on the fret modify the
pitch of the notes played by the string sensors. This behavior was very true to the actua
operation of ared guitar. After completing thisfirst smal guitar, Andy began building a

more complete guitar with six strings and more frets.

Figure 6: Guitar Instrument
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Another participant at the workshop, named Jessica, built avery unusua
ingrument. She wanted to use atemperature sensor in her instrument. First she thought
about what would be a good way to get different temperature readings. She quickly
decided to use bowls of different temperature water. She filled three bowls with water:
one warm, one medium, and one cold. She had seen the display used with the diding car
instrument and decided to use the same approach to help figure out what rangesto usein
digtinguishing the different temperatures of water. She measured each bowl of water
with the sensor and picked awide enough range to insure that she would identify the
different bowls of water. Jessicafirst assgned a sound to the cold water. She wanted the
indrument to play a high screeching pitch like someone would make when the fed redly
cold water. For the medium temperature she picked a chord that was in the middle; for
the warm water she picked a very soothing chord. Once the instrument was playing the
right sounds with one sensor she began experimenting with using a second temperature
sensor. Eventually, she decided that just one sensor was best. Findly, Jessica completed
her instrument by adding extra decorations with colored pipe cleaners.

Overdl, the workshop went very well. All of the participants were very excited
about the instruments they were creating and very happy with the results. None of the
participants had particularly strong musica backgrounds, but they did not have problems
using what they did know from just listening to music and seeing insruments played to
get started on their own project. Also, the students felt they gained knowledge about
music aswell as about using eectronic sensors.

Even in the limited time of this preliminary workshop, participants were able to
complete afirgt verson of ther insruments and have many more ideas for other

indruments. If given the possibility to continue interacting with this toolkit, these users



would have opportunities to learn additiona ideasin music, science, and engineering
design. Their competency with basic tools could enable them to explore more
sophisticated congtructions and ideas. We suspect that over time users will reach fluency
with the materid in the toolkit. They will be able to talk competently about what they
have created, in terms of musical and technica properties, and what their process wasin
doing s0. Moreover, they will be able to consder other dternate ways of desgning ther

ingrument and evauate those designs.

4.2 Additional Feedback

Beyond just the reactions from the students at the workshop, teachers, parents,
and other researchers at the [ab made comments about the musical instrument
condruction kit. While many of the comments were related to technica aspects of the
system, other comments addressed ways of using the system in different activities.

Many of the technica comments addressed the ability of the system to affect fine
detail and expression in performance. The chief observation was that smple MIDI was
not capable of performing a high enough leve of detall for use in genuine performance
gtuations. Whilethisfact is certainly true, the instruments we expect that students will
design with this system would be more closely matched with the style of insruments a
student would make from traditiona materials. Neither of these categories of insruments
would probably be seen on aconcert hall sage. Neverthdess, it may be possible to
modify the toolkit to bridge this existing gap between very sculpted and advanced
technologica instruments capable of true performances and the MIDI producing

instruments made from the toolkit.



Another comment addressed the set of actions available to perform in the tool kit.

Other forms of media output, like displaying video to the screen, were suggested. Also,
the ability to change high-level properties of the instrument with a sensor mapping was
aso proposed. These might include switching MIDI voices or changing the behavior of
the instrument based on some sensor mapping.

Musicd representations were aso addressed in some of the comments. Inthe
programming environment, the user is forced into dealing with the sandard musica
notation that includes staffs and clefs. Severa people thought that providing other ways

of indicating the notes to be played could be effective, like using drawings or colored

mappings
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5 FutureDirections and Conclusons

Currently we have a stable software environment in MICK for writing music and
cregting musical instruments, as well as atested set of hardware components for enabling
the congtruction of awide variety of insruments. Through both our persona evauation
process and outsi de feedback we have identified a number of ways in which to improve

MICK.

Hardware

Expanding the variety of sensors available will quickly enhance the types of
ingruments that users can create. For example, asmple wind sensor would alow the
congtruction of brass and woodwind style instruments that successfully replicate the fed
of their traditional counterparts. We would like to extend the Serid Interface with two
additional boards (stackable layers). Thefirgt isan improved verson of our MIDI
controller board. The second isadigitd sound sampling and playback board.

Software

We would dso like to make the software more powerful through stepsin three
important directions. First, we would like to provide ways of representing ideas and
information in new and novel ways. Second, we would like to dlow usersto interact
with the large body of music that dready exigts. Third, we would like to provide a
scripting tool that enables more sophisticated instruments and a broader set of activities.

While MICK’ s interface dlows users to program their insruments using sandard
musica notation and mathematica formulas, it would be nice to provide tools thet are

more imagindive and variable. For example, instead of modifying a sandard
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mathematicd function, the designer could smply draw a function, sandard or unusud,
which could then be used in their mathematical mappings. Smilarly, we would like
abgiract ways of representing musical pitches and expressons. Such arepresentation
might make use of color mappings or congructions in three-dimensiond spaces. Smply
expanding the realm of possibilities could spark an entire set of new ideasin people using
MICK, and thereby create an interesting new set of non-traditiond ingruments.

Allowing usersto incorporate the large body of aready exising musca
repertoireis dso important. To this end we would like to incorporate tools for importing
MIDI filesinto the sysem. Users would then be able to play their instruments along with
thosefiles Thistype of interaction will engage usersin amuch richer performance
environment.

The last mgor improvement we suggest here has been thought about in grest
detail. A tool for scripting a series of device commands would provide a significant
expangon to the current interface. Rather than only performing asingle action, the
designer could trigger aset of actions. For example, the instrument would be able to
blink lights in some repesating sequence or perform a sequence of motor actions. This
expanson to MICK would be especialy useful for creating generd- purpose tools like an
interface for controlling arobot, driving acar, or playing avideo game. The most
intricate aspect of the scripting environment is providing a method of multithreading the
commands o that the sensor actions can cause multiple sequencesto interleave, as well
as supporting delays and procedure cals. Conveniently, most of these characteristics can
be maintained by storing the command sequences in separate lists for each sensor and
expanding calsin alazy (waiting until required for execution) fashion. When a sensor

re-enters arange, the user will probably want to decide whether to append the sequence



to the end of the list or clear the list and begin the sequence again. Other questions
include the use of globa and local variables to avoid race conditions and other problems.
A further discussion of such a scripting language can be found in Appendix D.
Activities
Thistoolkit could provide awide set of activitiesin both music and science
classrooms. For example, avery rich activity in a science class, which rdaesto the
musica insrument congtruction, could be to explore how everyday materids (such as
Play-Doh™, dish soap, fruits and vegetables, etc.) can be used to create novel sensors. In
turn, those sensors can be used to create very whimsical musical instruments. This could
naturaly lead to a discussion about appropriate representations for notating and playing
music for such an ingrument. Furthermore, this could lead to an interesting discusson
on the higory of musical insgruments and musical notation in the music dassroom. In
this direction, an immediate future project is to develop detailed activity booklets and
support materids. In addition to schools, MICK can aso be introduced into a clubhouse
or after-school setting to provide kids with a chance to explore their ideas and promote
thelr socid interaction by playing the insruments they have created in smal ensembles,

Conclusions

The focus of the project thus far has been on creating a powerful construction kit
that highlights the interplay between many important idess in music, science, and
engineering design. In thisthess we presented the design rationae and implementation
of MICK. We dso discussed our preliminary findings from a number of studies and
discussons with children, schoolteachers, and professond musicians. While we have

had alot of encouraging results from these interactions, we believe that there remains a



need for acareful sudy of what learning opportunities these tools afford, and what
implications they have for dl aspects of our educationd system.
For updates on the development of this project go to

http:/Ilk.mediamit.edw/projectsMICK/.
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Appendix A: TheCricket

To make this document sdf contained, in this appendix we will provide some
technica detall about the Cricketsin so far as they influence the design of the Serid
Interface for this project. For amore detailed discussion of the Cricket system, please
refer to the MetaCricket Paper from which the contents of this gppendix have been
reproduced (with permision).

The Cricket. The Cricket isatiny, programmable computer (about the Size of a
9-volt battery) that can directly control motors and receive information from sensors.

The Cricket evolved from earlier M T “Programmable Brick” designs, which have led to
the recently introduced LEGO™ Mindstorms™ Roboatics Invention System™™ with its
RCX™ Brick.

The Cricket is based on aMicrochip PI C™ microprocessor. Basic actuators like
DC (direct-current) motors and lightbulbs plug into one of the Cricket's two motor
outputs, and ssimple resigtive sensors such as switches, photocells, and thermistors plug
into the Cricket's two andog voltage- senang inputs.

All Cricket devices have a built-in bidirectiond infrared communications channd,
which isused for Cricket-to-desktop communication (when downloading programsto a
Cricket, or viewing sensor data) and Cricket-to-Cricket communication. The Cricket dso
includes a peripherd expansion port, or “bus port.” The use of this port greetly expands

the capability of the Cricket and is discussed in depth later in this paper.
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Feature

Description

Program size

Procedures

Number system

Data and variables

Control structures

Multitasking

Communications

Hardware- specific

2048 bytes of compiled code
Each user-leve primitive function compilesto 1, 2, or 3 bytes

Arbitrary number of numeric inputs alowed
May provide numeric return value

16-bit integers

Add, subtract, multiply, divide, remainder, and modulus operators
Gresater than, less than, equality operators

And, or, not, and exclusive-or operators

Random number generator

16 available globa variables

Loca varigbles (limited by stack depth)

One-dimensiond arrays (2048 bytestota array data,
Persstent through power cycling

If-then; if-then-else
Loops (repeat n times or infinite)
Waituntil (Boolean expression)

One foreground thread plus one background daemon

Daemon fires when provided Boolean expresson makes
False-to-true trangtion

15-bit background millisecond timer (4-millisecond ticks)

Integrated infrared (IR) program download protocol
Low-leve primitives for IR communication between Crickets
Low-leve primitives for periphera bus communication

Motor power, direction
Andog input

Boolean input

Piezo tones

Table 2: Cricket Logo Feature Overview




Of particular importance to this project is the set of bus device that have been created and
may be used with MICK. A partid ligting of these devicesis given below.

** DC Motor Controller

** Servo Motor Controller

** Numeric and Alphanumeric Displays

** Tri-Color LED and Mater Controller

** |R Transceiver Boards

** RF Transcelver Boards

** Additional Resstive Sensor Ports

** Optical Distance Sensor

** Reflectance Sensor

** LEGO Rotation Sensor

** \/oice Recorder and Playback Module

** Heart Rate Monitor

** Sonar Range Sensor

** Clap and Pitch Sensor

** Keypad

** Digital Compass

** 2-axis Accderometer



Appendix B: Serial Interface

Hardware

Provided below isaschematic of the initid interface board. Theinterfaceis
based on a PIC16F876 processor and uses aMA X233 to communicate over the seria

cable with the PocketPC™. Assembly (PIC™) code describing its operation is aso

provided.

..‘-':7
MAx233 Thn

PICIEFETE

TOSFROM ELS

CLK

SENSOR
PORTS

Figure7: Serial Interface Block Diagram

The Serid Interface’ s actual layout consists of two PCB boards stacked on top of each
other (utilizing header pins). One of the boards contains the PIC™ and serid
componenets, the other board contains the sensor ports. These two PCB layouts are

shown on the following page.
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Softwar e

The assembly code used on the PIC™ will also be provided here. First however,
the mapping® between the MicroChip PIC™ op-codes and the op-codes used in the
Cricket assembler are provided.
In generd:

** Thew register has been renamed a. This convention isfollowed by amost every
other processor that only has afew regigters.

** |n the Cricket assembler the addressng mode is part of the op-code rather than an op-
code/syntax combination. E.g. the add ingruction are

add x

addn x

addm

The firgt form adds the contents of ram location x to a The"n" form (read as"add
number") adds a congtant value to a. The"m" (read as "add to memory") form adds a
to amemory location.

Theinc indructions are

inc x
linc x

Thefirg form increments memory location x. The"I" form (reed as "load and
increment”) loads the contents of location X into aand then increments a.

The "mov" indructions have been renamed as load (Ida) and store (sta) ingtructions -
again following the model of most other smple CPU's.

** A few other indructions (e.g. goto, call > bra, bsr) have been renamed.

** The order of the inputsto the bit ingtructions has been swapped.

&



addwf x,0
adawf x,1
addlw x

andwf x,0
andwf x,1
addlw x

iorwf x,0
iorwf x,1
iorlw x

subwf x,0
subwf x,1
sublw x

xorwf x,0
xorwf x,1
xorlw x

comf x,0
comf x,1

decf x,0
decf x,1

decfsz x,0
decfsz x,1

incf x,0
incf x,1

incfsz x,0
incfsz x,1

rIf x,0
rif x,1

rrf x,0
rf x,1

swapf x,0
swapf x,1

movf x,0
movf x,1

>>
>>
>>

>>
>>
>>

>>
>>
>>

>>
>>
>>

>>

>>

>>

>>
>>

>>
>>

>>
>>

>>
>>

>>
>>

>>

>>

>>

>>
>>

add x
addm x
addn x

and x
andm x
andn x

or X
ormxX
orn X

sub x
subm x
subn x

XOor X
xXorm X
Xxorn X

lcom x
com X

Idec x
dec x

|decsz x
decsz x

linc x
inc X
lincsz x
incsz X

Irol x
rol X

Iror x
ror X

[swap x
swap X

ldax
tst X



mowfx >> stax
moviwx  >> Idan x

clrf x >> arx
crw >> cdra

bcf x,b >> bclr b x
bst x,b >> bset b x

btfscx,b >> btsc b x
btfssx,b >> btss b x

cdl x >> bsr x
goto x >> brax

retfie >> rti

return >> rts
retiw k >> rtv k
nop >> nop

clrwdt >> clrwdt
seep >>  deep

We now providethe PIC™ code:

: Pocket PC I nterface
Sam Thi baul t

sant @nt. edu

Chris Lyon
scooby@ri t. edu
3-1-01

; watch out for $0c as tenp register
it is used for serial comm

; "hardware" registers

[const @ 0]

[const tiner 1]

[ const pcl 2]

[const status 3][const c¢ O][const z 2] [const bankl 5] [const
bankh 6]

[ const @@ 4]

[ const porta 5]

[const portb 6][const portb-ddr $86]

[const portc 7]

[const portd 8]

[const porte 9]

[const pirl $0C][const rcif 5]

[const rcsta $18][const spen 7][const cren 4][const oerr 1]

[const txreg $19]

[const rcreg $1A]



[ const
[ const
[ const
[ const
[ const
[ const
[ const
[ const
[ const
brgh 2]
[ const
[ const

[ const
[ const
[ const
[ const

[ const
[ const
[ const
[ const
[ const
[ const

start
[ bsr

| oop
[ bsr

tl $20]

transmit-byte $21]

recei ve-byte $22]

sensor-readi ng $23]

bus- code $24]

| ed- port portb]

| ed-pin 4]

option 1] ; bank 1

txsta $18][const csrc 7][const txen 5][const sync 4][const

spbrg $19]
tXx-port portb][const tx 1]

adresh $le]

adcon0 $1f] ; bank zero
adconl $1f] ; bank one
adon 0] [const adgo 2]

i ntcon $0b]
gie 7]
counter $25] ; $0c ; bit counter for byte in process

bus-data $21]
bus-port portb][const bus 2]
bus- port-ddr portb-ddr]

io-init]

serial-tyi]

[bra dispatch]

di spatch

[btsc 7 receive-hbyte]

[ bra bus-di spat ch]

[btsc 6 receive-byte]

[bra m di-dispatch]

[ bra sensor-dispatch]
[bra | oop]

bus-di spatch

[l da receive-byte]
[sta bus-code]

[btsc O bus-code] ; send 1 byte
[ bsr bus-di sp-sendl]
[btsc 1 bus-code] ; send 2 bytes
[ bsr bus-di sp-send2]
[btsc 2 bus-code] ; send 4 bytes
[ bsr bus-di sp-send4]

[btsc 3 bus-code] ; receice 1 byte
[ bsr bus-disp-recl]
[btsc 4 bus-code] ; receive 2 bytes
[ bsr bus-disp-rec2]
[btsc 5 bus-code] ; receive 4 bytes



[ bsr bus-di sp-rec4]
[bra | oop]

bus- di sp-sendl
[bsr serial-tyi]
[l da receive-byte]
[sta transnmit-byte]
[ bsr bus-tyo]
[rts]

bus- di sp- send2
[ bsr bus-di sp-sendl]
[ bsr bus-di sp-sendil]
[rts]

bus- di sp- send4
[ bsr bus-di sp-send2]
[ bsr bus-di sp-send2]
[rts]

bus-di sp-recl
[ bsr bus-tyi]
[l da bus-data]
[sta transnmit-byte]
[bsr serial-tyo]
[rts]

bus-di sp-rec2
[ bsr bus-disp-recl]
[ bsr bus-disp-recl]
[rts]

bus-di sp-rec4
[ bsr bus-disp-rec2]
[ bsr bus-disp-rec2]
[rts]

sensor -di spatch
;full return not inplenmented but individual readings are for 0-4
[btsc 2 receive-byte] ;sensor 4
[bra read- sensor €]
[btsc 1 receive-byte] ;sensor 2 or 3
[bra sensor-di spat ch2]
[btsc O receive-byte] ;sensor 0 or 1
[bra read- sensorb]
[bra read- sensora]
sensor -di spatch2
[btsc O receive-byte]
[ bra read-sensord]
[bra read- sensorc]

sensor-return
[l da sensor-reading]
[sta transmit-byte]
[bsr serial-tyo]
[bra | oop]



read- sensora
[ldan 1] ;chselectO + adon
[ bsr get-sensor]
[bra sensor-return]

read- sensorb
[dan 9] ;chselectl + adon
[ bsr get-sensor]
[bra sensor-return]

read- sensorc
[l dan $11] ;chselect2 + adon
[ bsr get-sensor]
[bra sensor-return]

read- sensord
[l dan $19] ;chselect3 + adon
[ bsr get-sensor]
[bra sensor-return]

r ead- sensore
[l dan $21] ;chselect4 + adon
[ bsr get-sensor]
[bra sensor-return]

get - sensor

[sta adcon0] ; turn on converter

[1dan $19] [bsr del ay-1oop] ; wait 100 m crosec acquisition
time

[ bset adgo adconOQ] ; start the conversion
sens20 [ bt sc adgo adconO][bra sens20] ; wait until done

[l da adresh][sta sensor-readi ng] ; read and return the result

[rts]

m di - di spat ch
[btsc O receive-byte]
[bra m di 2-di spatch]
[bra m di 3-di spat ch]

m di 2-di spatch
[bsr serial-tyi]
[l da receive-byte]
[bsr mdi-out]

[bsr serial-tyi]
[l da receive-byte]
[bsr mdi-out]

[bra | oop]

m di 3-di spatch
[bsr serial-tyi]
[l da receive-byte]
[bsr mdi-out]

[bsr serial-tyi]
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[l da receive-byte]
[bsr mdi-out]

[bsr serial-tyi]
[l da receive-byte]
[bsr mdi-out]

[bra | oop]
serial -tyi
[clr rcred]
[belr rcif pirl] ; clear the flag bit
[ bset cren rcstaj
s-tyi-md

[btss rcif pirl][bra s-tyi-md]
read is conplete

[lda rcred]

[sta receive-byte]

[clr rcred]

[bclr oerr rcsta]j

[rts]

serial-tyo
[ bset bankl status]
[ bset txen txsta]
[ bcl r bankl status]
[lda transmit-byte][sta txred]
[bset cren rcstaj
[rts]

m di - out
[sta t1]
[belr tx tx-port]
[Idan 14][ bsr del ay-1 oop]
[bsr so][bsr so][bsr so][bsr so]
[bsr so][bsr so][bsr so][bsr so]
[bset tx tx-port]
[l dan 14][bra del ay-1 oop]

SO [ror t1]
[beclr tx tx-port]
[btsc O status]
[bset tx tx-port] [nop] [nop] [nop]
[l dan 13]
del ay-1 oop
[addn -1][btss z status][bra del ay-1 oop]
[rts]

io-init
[ bcl r bankh status]

[ bset bankl status] ;sel ect bank 1
; Init baud rate for USART Synchonous naster

;[Idan 25][sta spbrg] ; 9600 baud on 4MHz xta
[Idan 51] [sta spbrg] ; 9600 baud on 8MHz xta



; Enabl e port
[beclr sync txsta][bset brgh txsta]

[l dan $00] [sta adconl] ; set raO,ral,ra2,ra3,ra4 to anal og

[ bclr bankl status]
[ bset spen rcsta]
[ bset bankl status]

[ bset csrc txsta]
[belr tx tx-port]

[beclr led-pin |ed-port]
[bclr bus bus-port]

[ bcl r bankl status] ; back to bank 0

[ bset bus bus-port]
[bset tx tx-port]

[clr transmt-byte]
[clr receive-byte]

; set to read port?

[l dan bus-port-ddr][sta @@
[bclr bus bus-port]

[bclr bus @

; [ bset bus bus-port]

[ bset bus @

[rts]

The foll owing subroutine is the 8MHz version of the standard bus
data receiving subroutine. The formof a byte is 100 usec low tine
(to allow for interupt latency) start bit(1l) + 8 data bits + stop
bit (0 for cormd 1 for data). Each bit is exactly 10 usec |ong, but
the value is valid only for the |ast eight nicroseconds. This code
sanples the bits between 3 and 5 us into each bit. This allows for
an interrupt to delay the routine by up to 4.5us and still allow the
data to be received. The subroutine was tested with delays of 9

i nstruction cycles and renoval of one delay instruction; if the delay

is 10 instructions or two delay instructions are renoved, the data
may not be received correctly. The data is returned in bus-data.
The inverse of the stop bit is returnted in the carry bit

commands have a 0 stop bit -> carry set

data has a 1 stop bit -> carry clear

21 July 1999 Jan Mal asek

bus-tyi ;[ bset led-pin |ed-port]

[btsc bus bus-port][bra bus-tyi]

btyi 20 [ btss bus bus-port][bra btyi 20] ; for sync edge

[ldan 8] [sta counter]

[bsr an-rts]

[bsr an-rts]

[bsr an-rts]

[bset led-pin led-port]; [nop]
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btyi 30 [ nop] [ nop] [ nop]

[ nop] [ nop] [ nop]

[ror bus-data]

[bclr 7 bus-data]

[ bt sc bus bus-port]

[ bset 7 bus-data]

[bsr an-rts]

[ nop] [ nop] [ nop]

[ decsz counter]

[bra btyi 30]

[bsr an-rts]

[bsr an-rts]

[bclr led-pin led-port] ; <-- test thingy

[ bset c status]

[btsc bus bus-port][bclr ¢ status] ; no stop bit -> carry clear
an-rts [rts]

bus-tyo
; set to wite port
[l dan bus-port-ddr][sta @@
[bclr bus bus-port]
[bclr bus @

go low for 100 us sync tine
[bclr bus bus-port]
[Idan 50] [bsr del ay-I oop]

; send start bit

[ bset bus bus-port] [nop]
[ bsr bus-del ay]

[bclr bus bus-port]

send bit 0-7
[btsc O transmit-byte]
[ bset bus bus-port]
[ bsr bus-del ay]
[ bclr bus bus-port]

[btsc 1 transnmit-byte]
[ bset bus bus-port]

[ bsr bus-del ay]

[bclr bus bus-port]

[btsc 2 transnit-byte]
[ bset bus bus-port]

[ bsr bus-del ay]

[ bclr bus bus-port]

[btsc 3 transmt-byte]
[ bset bus bus-port]

[ bsr bus-del ay]

[bclr bus bus-port]

[btsc 4 transnit-byte]
[ bset bus bus-port]

[ bsr bus-del ay]

[bclr bus bus-port]



[btsc 5 transnit-byte]

[ bset
[ bsr
[ belr

bus bus-port]
bus- del ay]
bus bus-port]

[btsc 6 transmt-byte]

[ bset
[ bsr
[ belr

bus bus-port]
bus- del ay]
bus bus-port]

[btsc 7 transnmit-byte]

[ bset
[ bsr
[belr

bus bus- port]
bus- del ay]
bus bus-port]

; conmand bit?
[btss 7 bus-code]

[ bset
[ bsr
[bclr

bus bus-port]
bus- del ay]
bus bus-port]

stop bit

[ nop]
[ bsr

[nop] [nop]
bus- del ay]

; command bit mai ntanence

[ belr

set
[ bset

[rts]

bus-del ay ;

7 bus-code]

to read port

bus @

to get 10 us bits on bus line

[l dan 2]

[ bsr
[rts]

del ay-1 oop] [ nop]
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Appendix C: MICK User Manual

This gppendix provides a brief ingruction manud for usng MICK with
descriptions of the many effects that can be produced.

Getting Started. When MICK is started a screen with alarge logo will appesr.
Before starting an instrument it is agood idea to test that the Serid Interface and MIDI
are working properly. To do this, select Test Midi from the Instrument menu. You
should then hear anote played through the MIDI. If this does not work, check that power
is supplied and that the interface is connected to the PocketPC™.

Now, select New from the File menu. (Note: you could also open a previoudy
saved file by using the Open command.) When you start this new instrument adiaog
box will gppear asking what type of sensor you would like to add asthe first sensor in
your ingrument. Choose the appropriate sensor from the options displayed. Once the
first sensor has been selected, the main screen will display the sensor as anicon, with
associated options and information displayed in arow across the screen. Theicons that
represent the different sensors are:

Touch Light Temperature Distance

i__

Setting the L ocation
To s the location of asensor, click on the gray box immediately to the right of

the sensor icon. A dialog box will appear where the sensor’ s location can be specified in
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terms of bus location and port number. For bus device sensors like a distance sensor,

leave the port field set to O.

1 | Setting the MIDI voice and channel
The next box to the right of the location box alows the MIDI voice associated
with the sensor to be sdected. Clicking on that icon will open adiaog box in which you
can et the channd and voice for the ingrument. Note that modifying the voice used by

some channd will affect all sensors that use that channd.

% .
\] Deleting a Sensor

Onthefar right of the screenisabox with an “X”. Clicking on this box will
remove the sensor and al its actions from the insrument. To add anew sensor, saect

Add Sensor from the Instrument menu.

Adding Sensor Actions. The remaining iconsthat have a“+" symbol contained
ingde them alow you to add actions and musica effectsto the sensor. Clicking on one

of these icons will open adidog box that alows the action to be specified in detall.

m @] Playing Notes and Chords

Thefirgt action alows for the playback of notes or chords. When the didog box
opensthere are two main sections. At the top are boxes that dlow the range to be
specified. Use these boxes to specify the vaues insde which this action to occur. For
example, if therangeisfrom 100 to 200, the note/chord will be played if the sensor’s
vaueisinthat range. To add a note to be played click the add note button. To move

between notes click on the next button. A sdlected note can be removed by clicking the



delete note button. To modify the pitch of the sdlected note click on raise pitch or lower
pitch. Findly, at the bottom of the dialog is a check box where the root pitch can be
played. Theroot pitch isaspecid note that can be modified by other actions. The shift
pitch action described next will talk more about this effect in detail. When finished
modifying the note, dick the ok button in the top right corner of the screen.

Once you leave the didog box anew row of icons will appear indented
undernesth the sensor you added the action. This indention will alow you to identify
which actions are associated with what sensors. To modify the actions later click on the

icon at the left of the actions row.

J 3 Shifting the Root Pitch

The next action that can be added (represented with adiding note) alows the root
pitch to be modified. Again thefirg part of the dialog box alows the range for this
action to occur. Therest of the didog dlows the direction and amount of the shift to be
specified. Theroot pitch itsdlf is gpecified from the seection Root pitch in the Instrument

menu.

NIKS Playing WaveFiles

The next action alows awave file to be specified for playback. Again enter the
range, aswell asthe name of the wavefile to play back. The wave file will be played

through the internal spesker in the PocketPC™.

[+ (][0 BRI
% ﬁ' Activating Motors, @‘ Ha Displays, M LI | and Tri-color LEDs

The three actions after playing wave file are dl used for non-musical outpui.

These actions dlow the interface to activate motors, displays, and tri-color leds,



respectively. In these didog boxes, as the others, sdect the range for the action to occur
fird. Next, snce al these devices are bus devices, select their buslocation. Findly the
specifics of the action, either motor direction or display detail, are entered. Again, click

ok tofinish.

4l ®
L Executing Scripting Commands

Theicon with aturtleisintended for future use. 1t will dlow scripting commands

to be specified.

S
M u Performing Functional Mappings

Thefind action (picturing agragph) alows mathematicd mappings to be
gpecified. After selecting the range, select the type of function to use. Thetwo vauesm
and b will be used as described in the table 3. At the bottom of the screen it is possible to

select the type of outputs. Y ou may choose from note, volume, display, and led

mappings.
Function Relationship tomand b
Linear y=m*x+b
Inverse y=m/x+b
Square y=m*x +b
Square Root y=m* ggrt(x) + b

Table 3: Mapping Functions




Playback and Finishing Up. Once the instrument has been set up with sensors
and actions its operation can be started by selecting Run from the Instrument menu. The
instrument can aso be saved using the options under the File menu. Itislikdy that an
ingrument will have more sensors and actions specified than will fit on the screen of the
PocketPC™. If this occurs, use the scroll up and scroll down buttons to move the sensors

and actions that are currently displayed.



Appendix D: MICK Scripting Primitives

In order to dlow a series of actions to be performed on a single sensor event,
MICK could alow usersto program in alogo-likelanguage. Thislanguage can perform
al the state-setting actions that MICK provides, such as playing anote or turning on a
motor, in a series of commands that may include timing delays, repeated sequences, or
other control structures. Procedures may be declared aswell. A sample set of
indructionsis given in table 3 below.

In order to dlow sensor events to be able to trigger severa interleaving series of
MICK - Script sequencesiit is necessary to implement some form of multi-threading. To
accomplish this objective, each sensor event is given its own queue for scripting
commands. When that sensor event is triggered, the commands the user has connected
with that event are added to that sensor event’s queue. On each pass over the sensors
while the instrument is running, each queue executes one ingruction. To help avoid
memory overflows due to recursive calls, ingtructions could be executed in alazy
manner. That is, acdl to aprocedure will not be expanded on the queue until that

procedure cal isreached. Notice, however, that MICK does not provide any strong

assurances on the safety of the command sequences. If one thread sets a motor and then a

different thread sets the motor to a different value. The most recent setting will win.

Therefore, users must use care in using such a scripting feature.
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Scripting Primitive

Explanation

To proc-name (:argl:arg2 ...
body
end

Creates a procedure named proc-name.
This procedure may receive arguments
named by variables garting with colonsin
the declaration. The body of the procedure
isincluded before the end keyword.

Repeat num [ body ]

Repesats ingructions in body of repesat
Satement num times.

if cond [ body ]

Teststhe condition cond. If the vAue of
cond istrue, body is executed.

Ifelse cond [ bodyl | [ body?2 |

Tegtsthe condition cond. If the vaue of
cond istrue, bodyl is executed, otherwise
body2 is executed.

Wait num Does not perform an ingdruction for num
indructions. (skipsingruction cycles)

Display num Displays number num on display bus
device.

SensorQ Returns the value of sensor in port O.

Sensorl ... sensor7

Returnsthe value of sensor inport 1 - 7.

Sensor color port

Returns the value of sensor in port port on
color color sensor port bus device.

Motor color port direction power

Sets motor in port port on color color

motor bus deviceto direction direction and
power power. directionisOor 1. power is
0-7

Note-on pitch channel

Melody filename

Clear this sensor-event’ s thread

Clear-thread
+-%/ Basic mathematical operators.
etc. etc.

Table 4: MICK Scripting Primitives




Appendix E: MIDI Instruments and Effects

This gppendix provides tables of the instruments available on the sandard MIDI

channds (1-9 and 11-16), aswel asaligting of the drum sounds for channd 10, which is

restricted to those drum events, followed by descriptions of the variety of MIDI effects.

PC# Instrument name

PC# Instrument name

PC# Instrument name

PC# Instrument name

1  Acoustic Grand Piano 33 Acoustic Bass 65 Soprano Sax 97 FX 1(ran)

2 Bright Acoustic Piano | 34 Electric Bass (finger) 66 Alto Sax 98 FX 2 (soundtrack)
3 Electric Grand Piano 35 Electric Bass (pick) 67 Tenor Sax 99 FX 3 (crystal)

4 Honky-tonk Piano 36 FretlessBass 68 Baritone Sax 100 FX 4 (atmosphere)
5 Electric Piano 1 37 SapBassl 69 Oboe 101 FX 5 (brightness)
6  Electric Piano 2 38 SlgpBass2 70 English Horn 102 FX 6 (goblins)

7  Harpsichord 39 SynthBass1l 71 Bassoon 103 FX 7 (echoes)

8 Clavi 40 Synth Bass?2 72 Clarinet 104 FX 8 (sci-fi)

9 Celesta 41 Violin 73 Piccolo 105 Sitar

10 Glockenspiel 42 Viola 74  Flute 106 Banjo

11 Music Box 43 Cdlo 75 Recorder 107 Shamisen

12 Vibraphone 44 Contrabass 76 Pan Flute 108 Koto

13 Marimba 45 Tremolo Strings 77 Blown Bottle 109 Kaimba

14 Xylophone 46 Pizzicato Strings 78  Shakuhachi 110 Bag Pipe

15 Tubular Bells 47 Orchestral Harp 79 Whistle 111 Fiddle

16 Dulcimer 48 Timpani 80 Ocarina 112 Shana

17 Drawbar Organ 49  String Ensemble 1 81 Lead 1 (square) 113 Tinkle Bell

18 Percussive Organ 50 String Ensemble 2 82 Lead 2 (sawtooth) 114 Agogo

19 Rock Organ 51 Synth Strings 1 83 Lead 3 (caliope) 115 Steel Drums

20 Church Organ 52 Synth Strings 2 84 Lead 4 (chiff) 116 Woodblock

21 Reed Organ 53 Choir Aahs 85 Lead 5 (charang) 117 Taiko Drum

22 Accordion 54 Voice Oohs 86 Lead 6 (voice) 118 Melodic Tom

23 Harmonica 55 Synth Voice 87 Lead 7 (fifths) 119 Synth Drum

24 Tango Accordian 56 Orchestra Hit 88 Lead 8 (bass + lead) 120 Reverse Cymbal
25 Acoustic Guitar (nylon) [ 57 Trumpet 89 Pad 1 (new age) 121 Guitar Fret Noise
26 Acoustic Guitar (steel) [ 58 Trombone 90 Pad 2 (warm) 122 Breath Noise

27 Electric Guitar (jazz) 59 Tuba 91 Pad 3 (polysynth) 123 Seashore

28 Electric Guitar (clean) | 60 Muted Trumpet 92 Pad 4 (choir) 124 Bird Tweet

29 Electric Guitar (muted) [ 61 French Horn 93 Pad 5 (bowed) 125 Telephone Ring
30 Overdriven Guitar 62 Brass Section 94 Pad 6 (metallic) 126 Helicopter

31 Distortion Guitar 63 Synth Brass1 95 Pad 7 (halo) 127 Applause

32 Guitar Harmonics 64 Synth Brass 2 96 Pad 8 (sweep) 128 Gunshot

Table 5: General MIDI Melodic Voices
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Note Drum Sound Note Drum Sound
BO Acoustic Bass Drum B2 Ride Cymbal 2
Cl Bass Drum 1 MiddleC (C3) | Hi Bongo

C#l Side Stick C#3 Low Bongo
D1 Acoustic Snare D3 Mute Hi Conga
Ebl Hand Clap Eb3 Open Hi Conga
El Electronic Snare E3 Low Conga
F1 Low Floor Tom F3 High Timbale
F#1 Closed Hi-Hat 1 F#3 Low Timbae
Gl High Floor Tom &3 High Agogo

Abl Pedd Hi-Hat 1 Ab3 Low Agogo
Al Low Tom A3 Cabasa
Bbl Open Hi-Hat 1 Bb3 Maracas
Bl Low Mid Tom B3 Short Whistle
C2 Hi Mid Tom 4 Long Whistle
C#2 Crash Cymbal 1 C#4 Short Guiro
D2 High Tom D4 Long Guiro
Eb2 Ride Cymbal 1 Eb4 Claves
E2 Chinese Cymbal E4 Hi Wood Block
F2 Ride Bell F4 Low Wood Block
F#2 Tambourine F#4 Mute Cuica
X Splash Cymbal A Open Cuica

Ab2 Cowbell Ab4 Mute Triangle
A2 Crash Cymbal 2 A4 Open Triangle
Bb2 Vibrasap

Table 6: General MIDI Percussion Sounds (channel 10)
Effect Description

Modulation Wheel

Volume

Pan

Expression

Damper Pedal (Sustain)

Sostenuto

Effect 1 Depth (Reverb)

Effect 2 Depth (Chorus)

Used to control pitch modulation (vibrato) level on a specified channel

Used (in conjunction with Expression) to control overall volume of notes
on aspecific channel

Used to control left/right output placement for notes on specified channel

Used (in conjunction with VVolume) to control overall volume of notes on
aspecific channel

Allows notes on a specified channel to continue sounding after the
corresponding notes have been released. Notes are terminated when
damper pedal isturned off.

Similar to Damper Pedal, except Sostenuto only effects note which were
already active when Sostenuto is turned on.

Used to adjust the amount of reverb effect applied to sounds played on a
specific channel

Used to adjust the amount of chorus effect applied to sounds played on a
specific channel

Table 7: General MIDI Effects




