
MICK: A Design Environment for Musical Instruments

by

Samuel H. Thibault

Submitted to the Department of Electrical Engineering and Computer Science

In Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 21, 2001

Copyright 2001 Massachusetts Institute of Technology. All rights reserved.

Author__

Department of Electrical Engineering and Computer Science
May 23, 2001

Certified by__
Bakhtiar J. Mikhak

Thesis Supervisor

Accepted by___
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

 2

 3

MICK: A Design Environment for Musical Instruments
by

Samuel H. Thibault

Submitted to the
Department of Electrical Engineering and Computer Science

May 21, 2001

In Partial Fulfillment of the Requirements for the Degrees of
Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

A growing body of educational research has shown that children learn most effectively
when they are engaged in designing and constructing things that are personally
meaningful to them. Consequently, the challenge facing many researchers and
practitioners has been to design a diverse collection of construction kits that support
learning about many powerful intellectual and artistic ideas. In this thesis we report on
the design and the implementation of a toolkit, called MICK, geared towards rethinking
music education. MICK is a musical instrument construction kit that enables novices,
particularly children, to design and build their own musical instruments. The electronics
components and software tools in MICK make it possible to rapidly prototype a wide
variety of instruments and other devices. The process of constructing a musical
instrument with MICK also provides learners with many authentic opportunities for
exploring and reflecting on important mathematical, scientific, and engineering ideas.

Thesis Supervisor: Bakhtiar J. Mikhak
Title: Research Scientist, MIT Media Laboratory

 4

Acknowledgements

Over the year I worked on this project I received help and guidance from a wide

range of people. In starting at the beginning, I must certainly thank Andy Begel, who

guided me to what must be the one of the very best places I could have done my research

anywhere: The Lifelong Kindergarten Group at the MIT Media Lab. Once there I began

working with my thesis advisor, Bakhtiar Mikhak. His tireless efforts in providing

direction and resources to my project were extraordinary. His guidance in both technical

and theoretical ideas was critical to my success. I can not praise his abilities enough.

The rest of the group also gave both help and advice when needed. Mitchel

Resnick guided me with high-level ideas to help situate my project. Chris Lyon did an

amazing job working on the Serial Interface. When I (often) needed technical help, I

turned to the remarkable abilities of Brian Silverman, Robbie Berg, Casey Smith, Rahul

Bhargava, and Daniel Kornhauser. I would also like to thank the graduate students in the

Hyperinstruments group, especially Roberto Aimi and Gili Weinberg, for their feedback.

Finally, I am grateful to Amir and Javaneh, who were enthusiastic participants in the

workshop.

In addition to all the people who helped me directly at the lab, I would also like to

thank my family and friends for all the support they have given me. Not only this year,

while working on my thesis, but throughout my studies at MIT. Thanks to all of them I

can finally wear the button on June 8th that says, “I did it! – MIT GRAD”

 5

Contents

1 Introduction 9

2 Scenario 14

3 Design Evolution and Implementation 17

 3.1 Background Work 17

 3.2 Initial Prototype 19

 3.3 The MICK Environment 21

4 Evaluation 26

 4.1 Workshop Results 26

 4.2 Additional Feedback 30

5 Future Directions and Conclusions 32

References 36

Appendix A: The Cricket 37

Appendix B: Serial Interface 40

Appendix C: MICK User Manual 52

Appendix D: MICK Scripting Primitives 57

Appendix E: MIDI Instruments and Effects 59

 6

List of Figures

1 The Cricket 18

2 A Cricket with Bus Devices 18

3 Melody Editor Screenshot 20

4 Bus Device Protocol 23

5 Sliding Car Instrument 27

6 Guitar Instrument 28

7 Serial Interface Block Diagram 40

8 Serial Interface PCB Layout 41

 7

List of Tables

1 Serial Interface Byte Commands 22

2 Cricket Logo Feature Overview 38

3 Mapping Functions 55

4 MICK Scripting Primitives 58

5 General MIDI Melodic Voices 59

6 General MIDI Percussion Sounds 60

7 General MIDI Effects 60

 8

“Better learning will not come from finding better ways for the teacher to
instruct, but from giving the learner better opportunities to construct.”

-Seymour Papert

 9

1 Introduction

Support for music and theater arts education continues to decline. Many key

decision-makers in educational systems worldwide bolster support for mathematics,

science, and technology curricula at the expense of music and theater arts programs.

However, there are many compelling reasons for protecting the arts education in our

schools. First, the arts are an important form of human expression in and of themselves.

Second, the arts have deep connections with and are complementary to the more abstract

ways in which we as humans describe and make sense of the world around us. Third, the

arts have been one of the major driving forces behind many technological advancements.

Finally, children's deep interest in music and the arts provides an authentic context for

introducing them to many important ideas in mathematics, science, engineering and

design.

These observations present us with both a challenge and an opportunity. The

challenge is to find good ways of preserving what is best about the arts education while

addressing the growing need for cultivating a technological fluency in our children. On

the other hand, we have the opportunity to use technology to give children the tools they

need to create not only their own art but also their own tools for creating art. In fact, the

results from a large body of research from the constructionist learning community5,12,13

have shown that children learn most effectively when they are engaged in creating things

that they care about. One of the principle components of the research methodology in

this community has been to create and evaluate construction kits and support materials

that provide children with multiple new paths for making sense of the world and

expressing themselves.

 10

Following in the constructionist tradition, the research presented here focuses on

the design and implementation of a construction kit for making a wide variety of musical

instruments. A key observation underlying this thesis is that appropriate uses of

technology can provide children with learning experiences that would fundamentally

challenge our assumptions and our stance towards music education.

A closer look at this construction kit would be helpful in getting a better sense of

the types of learning opportunities it provides. Let us consider an activity in which

children build their own musical instruments. In this environment we fill the learners

toolkit not only with traditional materials like wood and string, but with a broad set of

electronic sensors capable of detecting touch, light, temperature, distance, motion, sound,

etc. Moreover, we provide a software tool that allows users to easily map the input from

the sensors to musical output. This environment provides not only the traditional

characteristics of a musical activity, but also helps the user learn design skills, gain

technological fluency, engage in deeper social interaction, and connect to important ideas

in music, science, and engineering.

While there are many similarities between constructing an instrument from basic

materials and constructing an instrument that also includes technological tools, the most

significant trade-off exists in moving from acoustical to digitally created sounds. For

example, in constructing a xylophone from wood the designer will need to work very

hard to insure that each key of the xylophone is the correct size for the pitch it is intended

to produce. This physical requirement is similar for other basic instruments like a guitar,

where the tightening of the strings is the crucial element. Once the builder moves to

using a set of electronic sensors the physical details change significantly. For example,

the designer might replace a xylophone key with a touch sensor. Now, the most

 11

important element is not the exact size of the key but how the key is struck. The output

pitch can easily be set in software to create the correct musical output. In essence, the

designer must look at the quantitative values that exist in playing the instrument (what

value does the sensor read when I strike it?), not just the intuitive quantitative properties

that exist in a traditional instrument (if I hit the sensor hard the note is loud). By

considering this additional element, the user can explore a set of musical mappings that

are not restricted by the basic materials available. Moreover, the builder can engage in

thinking about properties that go beyond intuitive physical relationships and use them to

augment traditional properties.

By using this advanced musical instrument construction kit, the user can explore

not only representations for musical instruments but also methods for representing

musical ideas and music compositions. We could even consider an example where the

instrument can read through music autonomously, though in a different representation

than sheet music. One such example might center on a car-like instrument that drives

over colored pieces of tape. Each color could represent a different note to the car. As the

car drives over that color it sustains the specific pitch for as long as it is driving over that

color. Thus a composer of a piece of music for this musical car would write his melody

in the colored tape. Beyond this one example it is possible to imagine many other

musical representations that are very different from traditional musical notation. This

realm of possibilities provides the potential for many rich learning opportunities that do

not simply fit into any one traditional discipline.

In utilizing this a more advanced toolkit for building instruments, the learner will

become involved in exploring important ideas in engineering and gain technological

fluency. In the interaction with sensors alone, the user will need to begin thinking about

 12

scientific ideas. In using a light sensor, for example, the designer will need to explore the

types of values that the sensor returns. After experimenting with the behavior of the

sensor, they will need to decide what value is a good divider between values that mean

“light” and values that mean “dark”. They might decide to divide the returned sensor

values into several small ranges to provide more detail. All of these simple interactions

are important in learning about engineering and design decisions. Also, these electronic

elements are probably common in a lot of elements the learner sees outside of this

activity. Hopefully they will start to think about the ways they interact with other objects

and what types of sensors are involved in those interfaces. Through this continued cycle

of design, construction, and reflection, learners will build confidence in scientific and

engineering techniques. They will develop intuitions about which uses are most effective

for particular sensors, building materials, and functional mappings.

In consideration of using this tool in a classroom setting, it is worthwhile to

briefly examine how activities with this toolkit may be incorporated into the available

time in a curriculum. When it is necessary to fit the activities into a limited amount of

time, it may be best to limit the breadth of the activity on any given day but work hard to

maintain a continuity from day to day if the activity can be extended to multiple days. In

a single short session, learners could delve into one specific aspect of the toolkit related

to current work in a class. For example, an activity in a science classroom might examine

how to build a sensor out of unusual materials and incorporate it into a musical

instrument built with the toolkit. When there are less time restrictions, users could be

permitted to explore the toolkit in whichever directions they choose. In creating their

instruments, students would need to find solutions to specific implementation problems

 13

they encounter. In doing so, their desire to make their instrument perform well will drive

their exploration of the underlying tools and scientific ideas that are needed.

The previous discussion has been the driving force for designing a new

computational toolkit for music education. This document will detail the design rationale,

implementation, evaluation, possible uses, and future directions of a Musical Instrument

Construction Kit (MICK) through four chapters. The first of these chapters will describe

a sample scenario that reflects the type of interaction we feel is possible based on the

features of the tool and the activities we have observed. The next chapter provides a

technical description of both the software and hardware components of MICK. In the

third chapter, results from workshops and feedback sessions are described. We look at

future directions for MICK in the last chapter.

 14

2 Scenario

To help illustrate the type of interaction envisioned between a child and this new

musical instrument construction kit we will develop a scenario in which a child uses the

toolkit. In this example a child named Mick will explore building a musical instrument

and then share the musical instrument he has created with his classmates at school.

Mick begins by opening his toolkit and seeing what types of objects are inside.

He finds an assortment of sensors, an interface to connect the sensors to his computer,

and software that enables him to program how his musical instruments will work. Mick

decides that he will look at a few of the examples provided in a booklet that came with

the kit before deciding exactly what he wants to build. The first example shows how to

build a set of bongos. Each of the two drums is created from a light sensor. When the

light sensor is covered the drum sounds. This simulates the action of striking a real drum.

After building and playing the bongos for a short time, Mick changes the sounds the

drums are producing to different drum sounds. He tries cymbals and other drums. Mick

next looks at one other example – a small piano. Each key in the piano uses a touch

sensor. When the sensor is pressed, a note is played for that key. While exploring this

example, Mick decides to change the notes that the piano plays to a different scale. Then

Mick gets another idea. He records his voice saying different words and replaces the

notes with his recorded voice. Now he can form sentences by pressing the keys in the

right order.

After playing with these two example instruments, Mick now feels ready to create

his own instrument. He decides that he will try using a distance sensor and map the value

of that distance sensor to a musical pitch. While experimenting with different ranges and

 15

different MIDI voices, Mick decides to only have the notes play when he blows into a

wind velocity sensor. Now when he blows into the sensor, a note is played based on the

value of the distance sensor. This correlation reminds Mick of a trombone so he decides

to change the MIDI voice to a trombone sound. Finally, Mick decides to add volume

control to his instrument. He maps the wind velocity sensor to the volume of the output

so he can play loudly by blowing hard or play softly by blowing lightly. After a little bit

of decoration, Mick feels that his instrument is complete.

Mick is proud of the instrument he has made and decides to take it to school and

to show it to his classmates at school the next day during show and tell. During his

presentation, Mick talks about his instrument and how he expanded it from one sensor to

two. He talks about choosing the right sensor values for his instrument and how the

values map to musical output. After he shows his instrument, the class talks about the

interfaces that different instruments have. They also talk about how they interact with

other objects besides musical instruments and how other types of interfaces are designed.

 After school that day, Mick returns home inspired to build a new sensor for use in

a musical instrument. By connecting two wires to a piece of fresh Play-DohTM 11, Mick is

able to measure a resistive value. As he sculpts the Play-DohTM, Mick is able to change

the value. Much like his previous instrument, Mick maps this value to a musical pitch.

However, due to the novel nature of the Play-DohTM instrument, Mick would like to

create a special way for notating songs he will play on the instrument. Mick decides to

write the music much like a mathematical plotting. The value of the drawn function

represents how “squeezed” the Play-DohTM in the instrument appears at each point. This

representation allows Mick to play through his song by executing the correct pattern of

 16

squeezes; Mick does not even need to know the details of standard musical notation in

order to play the songs he writes. He has created his own independent representation.

 The Scenario above presents many different types of interactions between Mick

and the toolkit, yet the ideas for these sample interactions did not come from a vacuum.

The workshops conducted as a part of this research, as well as other feedback and

inspiration from other Media Lab groups, directly demonstrated or strongly anticipated

all of these types of interactions. Reading through the remainder of this document, the

reader may find it helpful to keep in mind the broad range of interactions that are

possible, and how these interactions can positively affect learning.

 17

3 Design Evolution and Implementation

The musical instrument construction kit (MICK) developed out of previous work

done in the Epistemology and Learning Group and the Lifelong Kindergarten Group at

the MIT Media Lab. Expanding on workshops6 done with a small programmable device

called a Cricket2,8, initial prototypes utilized a desktop environment that contained tools

for writing musical compositions and programming musical instruments that contained

Cricket sensors and devices. After those beginning efforts, the project was revamped to

utilize the PocketPCTM 14 as both a programming environment and controller for the

musical instruments.

3.1 Background Work

The first ideas for the musical instrument construction kit evolved from earlier

work done with the Cricket. The Cricket itself is a small computer only slightly larger

than, and powered by, a 9-volt battery. A single Cricket is capable of powering two

LEGO motors, monitoring two sensors, and controlling several additional devices.

Crickets can also communicate with other Crickets or a computer interface using infrared

light. A dialect of the Logo programming language is used to program the Crickets. The

language includes procedure calls, simple control structures, and standard numeric

operations. Logo also has functions for motors, sensors, timers, and playing tones.

There have been several expansions to the basic Cricket as well. The selection of

sensors, once including only light and touch sensors, now provides sensors to detect

temperature, reflectance, acceleration, and more. In addition, expansion devices are

 18

available which can be plugged into the Cricket’s bus ports. One such device provides

additional inputs for sensors, allowing four additional sensors per device beyond the

original two.

Figure 1: The Cricket

 One recently created bus device that is especially useful for a Cricket based

musical instrument is the Musical Instrument Digital Interface (MIDI) bus device10. With

a set of primitive commands the Cricket can play musical notes using standard MIDI

voices and channels, just like a musical synthesizer. MIDI commands are more

complicated than other basic Logo commands and that makes MIDI programs much more

difficult to write. More information about the Cricket may be found in Appendix A.

More information on MIDI features may be found in Appendix E.

Figure 2: A Cricket with Bus Devices

 19

 Some software tools have been written to aid in Logo programming. An

application3 written in the MicroWorldsTM 9 environment is currently the standard

environment for programming the Cricket. It offers a command center interface for

running code one instruction at a time as well as tools to load longer user programs onto

the Cricket. LogoBlocks1,7, another tool, provides a visual programming environment in

which Logo commands and control structures are represented and manipulated as

graphical blocks. A sequence of instructions is created be “snapping” the blocks together.

However, neither of these tools currently has an easy method for programming MIDI

commands.

 This conflict between the common desire to build a musical instrument with the

Cricket and the lack of an effective tool for creating a musical instrument became evident

at a number of workshops with the Crickets. Although it was possible to build the

instruments, the complexity needed to be relatively low and the time required to complete

the instruments was often large.

3.2 Initial Prototype

The development of MICK began by focusing on improving the way in which a

Cricket musical instrument was programmed. The new toolkit aimed at providing a

simple interface for achieving musical effects. The first part of the project aimed at

creating an environment for writing music compositions for playback on the Cricket. The

second part of the project developed a graphical environment for programming a Cricket

to behave like a musical instrument. Both of these elements were originally aimed at the

desktop environment.

 20

 The melody editor provides a graphical interface for writing musical scores in

standard notation. The user can select notes and markings from a palette and place them

on a staff. The tool handles spacing the notes appropriately and positioning markings and

notation in the appropriate place. The playback of the score can also be modified to use

any set of MIDI voices. Once finished the melodies can be outputted as Logo code that

can then be loaded onto a Cricket and be played back.

Figure 3: Melody Editor Screenshot

The more significant half of the project was the instrument editor. The instrument

editor allows the user to map sensor actions to musical output and other MIDI effects.

For each sensor, the user can define a range for the effect to occur. When the sensor’s

value enters that range, the musical effect occurs. This effect could be playing a note or a

chord, playing a melody, or performing some other Cricket action like turning on a

motor. Though it was possible to quickly design an instrument with this interface, the

Cricket suffered from a lack of processing power and a severe bottleneck in

communication with the connected devices. Therefore, a new solution was developed in

which the processing of the Cricket would be replaced with a PocketPCTM. In addition a

 21

new interface would be designed to allow the PocketPCTM to communicate with the same

devices as the Cricket. These improvements were completed for the current version of

MICK described below.

3.3 The MICK Environment

The full version of the project is called the Musical Instrument Construction Kit

(MICK). It uses the PocketPCTM rather than the desktop as the main working platform.

To enable the PocketPCTM to work with the Cricket’s sensors, motors, and bus devices a

special Serial Interface was designed. The initial instrument creation software created for

the desktop was recreated and improved in a version for the PocketPCTM. The melody-

editing tool remained fairly untouched, though it was modified to download melodies to

the PocketPCTM.

In order to allow the PocketPCTM to connect with Cricket sensors and bus devices,

a new interface needed to be made with the PocketPCTM’s native serial port. This

interface would need to receive bytes from the PocketPCTM that specify actions for the

interface to perform, like checking a sensor’s value, and then send bytes back with the

specified result. There were three such actions that the interface needed to implement:

sensor checks, midi commands, and bus commands.

The top two bits of each byte specify the action type; the remaining six bits

contain information relevant to that command. For sensor checks, the low bits describe

the sensor port to check. That port is checked and the value is returned in a byte. For a

MIDI command the low bits specify how many MIDI instructions of one byte each,

either two or three, will follow. Commands for bus devices use the lower bits to describe

 22

how many bytes will be sent to the bus device, and then how many bytes will be read

back to the PocketPCTM.

Command Type Byte Appearance Comments
Sensor Check 00XXXPPP PPP is three bit id (0-7) of

the sensor port to check.
For example, ‘00000010’
means check sensor port 2.

MIDI 01XXXXXB B is number of bytes in the
MIDI command:

0 = 3 byte command
1 = 2 byte command

Bus Device 10RRRSSS RRR and SSS are 3 bit
values (0-7). SSS is the
number of bytes to send to
the bus device. RRR is the
number of byte to receive
from the bus device.

Table 1: Serial Interface Byte Commands

Sensor ports on the Serial Interface provide ports identical to the ports on the

Cricket. The interface provides room for eight sensors directly on the board, though

additional sensors can be provided with bus devices. Sensor values are calculated using

analog to digital conversion on a PICTM processor. For complete assembly code, block

diagram, and PCB layout of the interface board see Appendix B.

One problem encountered in connecting the interface to standard Cricket bus

devices was the communication protocol. Whereas the PocketPCTM communicates with

the Serial Interface using bytes (8 bits each), the Cricket communicates with bus devices

using a 9 bit instruction, eight bits of data plus an additional command bit. After

synchronizing with the bus device, the Cricket begins by sending a start bit, one high bit.

Next follows 8 bits of data. The tenth bit of the signal is a command bit. This command

bit is zero if it is the first bit sent to a bus device and one otherwise. The last bit sent is a

low bit, the stop bit (see Figure 4).

 23

Figure 4: The Bus Device Protocol8 (reprinted with permission)

 In order to account for the command bit, the Serial Interface makes the command

bit low for only the first command sent to the bus devices from the Serial Interface. The

eight bits of data are exactly the contents of the bytes sent from the PocketPCTM to the

interface. The interface already knows how many bytes it will send from the original

command byte (see Table 1 above).

The instrument editor on the PocketPCTM is very similar to the interface of the

initial prototype for the desktop environment. Sensor values may still be mapped to

musical output in the same way. The interface now provides many improvements over

the original prototype. In addition to MIDI output, sounds recorded as wave files can

also be outputted. Bus devices also provide an additional method of creating output

whether through motors, displays, are other devices. One additional feature allows

sensor values to be mapped through a mathematical function to output.

Because of the number of devices that could be attached to the Serial Interface, it

is critical that the exact location of those devices be specified. MICK allows the user to

describe where devices are located using simple dialog boxes. For sensors connected to

 24

the interface, naming the port is all that is required. For bus devices, the type and

coloration of the bus device (red, blue, yellow, or white) is also needed.

The sensor ports on the Serial Interface to the PocketPCTM replicate the ports

existing on Crickets. Therefore sensor values can be treated exactly the same way as in

the initial prototype. Sensors are divided into two basic categories: toggle and ranged.

Toggle sensors only encompass touch sensors. For these sensors, the value returned to

the Cricket is a value of true or false. Actions may be triggered for either of those two

states. For example, we might want to say “when touch sensor #1 is pressed then do

some action.”

 For ranged sensors, the value returned to the Cricket is an integer in the range

from 0 to 255. For these sensors it is necessary for the user to specify what values will

trigger an action by setting up a range. This range would have an upper and lower bound

within the range 0 to 255. For example, we might want to say “when light sensor #2 is

returning a value between 100 and 200 then do some action.”

In the examples above, the “do some action” phrase has not yet been clarified.

The user selects the desired actions from a set of options that are displayed, such as

playing a note, playing a melody that was created in the melody editor, or causing some

MIDI effect to occur. Once the type of action has been selected the user then supplies the

details of that action. For example, in the case where the user would like a note (or set of

notes to be played), a window appears where the user enters the notes to be played. If the

user selected to play a melody, a box would appear where the filename for that melody

should be entered.

 In addition to MIDI output through a speaker connected to the Serial Interface, the

PocketPCTM includes an internal speaker that allows for additional media output. The

 25

most direct application of this capability is triggering wave file playback as output. This

feature allows for many interesting instruments, such as a child creating an instrument

that outputs sounds recorded from their own voice.

The ability to use bus devices for additional output provides a whole new scope

for the type of projects created with MICK. Not only basic musical output may be

performed, but control of motors and other devices. Instead of making merely a musical

interface, a student could create an interface for controlling a car or robot. This

functionality allows MICK to be used as a general-purpose tool in addition to just a

musical tool.

One significant feature added in the PocketPCTM that goes outside any feature in

the initial desktop version is a tool for creating functional mappings. In a functional

mapping, a sensor’s value is passed through a mathematical function to return a new

value. It is the returned value that may then be used for other effects. For example, a

light sensor might be used with a functional mapping to control the instrument’s volume.

These mappings do not need to be linear. MICK provides four basic functions for

mappings: linear, inverse, square, and square root.

 The complete manual for MICK and all the possible actions it performs with

examples is given in Appendix C.

 26

4 Evaluation

MICK was demonstrated and used in several environments to get feedback on its

functionality and usability. This feedback came from workshops conducted with middle

school children ages eleven to thirteen, as well as through comments from other

researchers in the MIT Media Lab. Particularly useful feedback was received from

members of the Hyperinstruments Group directed by Tod Machover.

4.1 Workshop Results

The workshop consisted of three main phases. At the beginning, MICK was

introduced to the students through some example instruments and a brief tutorial. Most

of the time in the middle was dedicated to allowing the students to design and build an

instrument from the tools and materials provided. At the end of the workshop each

participant shared the instrument they had created.

The workshop began by introducing the students to two previously built

examples. The first example was a simple piano. The piano consisted of five keys, with

each key having an associated light sensor. The sensor was normally covered, but when

a key was pressed the light was revealed to the sensor. The piano was set up to play one

section of a standard scale with no special modifications. The second example was built

to explore the realm of non-traditional instruments. It consisted of a raised rail with a

moving car. An optical distance sensor was attached to the car facing downwards, with

enough open space existing below the car to allow blocks to be stacked to different

heights. As the car moved back and forth on the rail, the distance sensor would measure

 27

the distance to the stack of blocks directly below it and then map that value to a note. A

tall stack of blocks would result in a high pitch, while a low stack of blocks would result

in a low pitch. In addition, the instrument possessed a display that showed the value the

sensor was reading. The display was useful in debugging the instrument and explaining

the instruments operation to the students.

Figure 5: Sliding Car Instrument

 After demonstrating these two instruments, the students were introduced to the

software interface through a tutorial. The participants were shown how to start a new

instrument and set the port location for the sensors they added. Next, the students went

through the step-by-step process of setting up a light sensor with different ranges to play

different notes. Following this introduction to MICK, the students began to design and

build their own musical instruments. The creations of two of the students are described in

detail below.

 One of the students, named Andy, was interested in building an instrument that

behaved like a guitar. He began by choosing the type of sensors he wanted to use. Andy

 28

decided touch sensors would work well for emulating the frets of the guitar as well as the

strings of the guitar. Andy’s next step was building the body of the guitar out of LEGO

building blocks and embedding three touch sensors to represent strings, and two touch

sensors in the neck of the guitar to use for frets. Now it was time to begin programming

the guitar so the sensors would trigger sounds. The first step in programming the guitar

was setting up one of the touch sensors representing a string. Since the default MIDI

voice of the instrument sounded like a piano, Andy immediately changed the MIDI voice

to sound like a guitar. After the first string was ready, Andy programmed the other two

strings two sound at higher pitches than the first. Now Andy moved to the frets of the

guitar. With a little help, Andy learned how to shift the pitch of other notes that were

playing. Using this feature of the toolkit, he had the touch sensors on the fret modify the

pitch of the notes played by the string sensors. This behavior was very true to the actual

operation of a real guitar. After completing this first small guitar, Andy began building a

more complete guitar with six strings and more frets.

Figure 6: Guitar Instrument

 29

 Another participant at the workshop, named Jessica, built a very unusual

instrument. She wanted to use a temperature sensor in her instrument. First she thought

about what would be a good way to get different temperature readings. She quickly

decided to use bowls of different temperature water. She filled three bowls with water:

one warm, one medium, and one cold. She had seen the display used with the sliding car

instrument and decided to use the same approach to help figure out what ranges to use in

distinguishing the different temperatures of water. She measured each bowl of water

with the sensor and picked a wide enough range to insure that she would identify the

different bowls of water. Jessica first assigned a sound to the cold water. She wanted the

instrument to play a high screeching pitch like someone would make when the feel really

cold water. For the medium temperature she picked a chord that was in the middle; for

the warm water she picked a very soothing chord. Once the instrument was playing the

right sounds with one sensor she began experimenting with using a second temperature

sensor. Eventually, she decided that just one sensor was best. Finally, Jessica completed

her instrument by adding extra decorations with colored pipe cleaners.

Overall, the workshop went very well. All of the participants were very excited

about the instruments they were creating and very happy with the results. None of the

participants had particularly strong musical backgrounds, but they did not have problems

using what they did know from just listening to music and seeing instruments played to

get started on their own project. Also, the students felt they gained knowledge about

music as well as about using electronic sensors.

Even in the limited time of this preliminary workshop, participants were able to

complete a first version of their instruments and have many more ideas for other

instruments. If given the possibility to continue interacting with this toolkit, these users

 30

would have opportunities to learn additional ideas in music, science, and engineering

design. Their competency with basic tools could enable them to explore more

sophisticated constructions and ideas. We suspect that over time users will reach fluency

with the material in the toolkit. They will be able to talk competently about what they

have created, in terms of musical and technical properties, and what their process was in

doing so. Moreover, they will be able to consider other alternate ways of designing their

instrument and evaluate those designs.

4.2 Additional Feedback

Beyond just the reactions from the students at the workshop, teachers, parents,

and other researchers at the lab made comments about the musical instrument

construction kit. While many of the comments were related to technical aspects of the

system, other comments addressed ways of using the system in different activities.

Many of the technical comments addressed the ability of the system to affect fine

detail and expression in performance. The chief observation was that simple MIDI was

not capable of performing a high enough level of detail for use in genuine performance

situations. While this fact is certainly true, the instruments we expect that students will

design with this system would be more closely matched with the style of instruments a

student would make from traditional materials. Neither of these categories of instruments

would probably be seen on a concert hall stage. Nevertheless, it may be possible to

modify the toolkit to bridge this existing gap between very sculpted and advanced

technological instruments capable of true performances and the MIDI producing

instruments made from the toolkit.

 31

Another comment addressed the set of actions available to perform in the toolkit.

Other forms of media output, like displaying video to the screen, were suggested. Also,

the ability to change high-level properties of the instrument with a sensor mapping was

also proposed. These might include switching MIDI voices or changing the behavior of

the instrument based on some sensor mapping.

Musical representations were also addressed in some of the comments. In the

programming environment, the user is forced into dealing with the standard musical

notation that includes staffs and clefs. Several people thought that providing other ways

of indicating the notes to be played could be effective, like using drawings or colored

mappings.

 32

5 Future Directions and Conclusions

Currently we have a stable software environment in MICK for writing music and

creating musical instruments, as well as a tested set of hardware components for enabling

the construction of a wide variety of instruments. Through both our personal evaluation

process and outside feedback we have identified a number of ways in which to improve

MICK.

Hardware

Expanding the variety of sensors available will quickly enhance the types of

instruments that users can create. For example, a simple wind sensor would allow the

construction of brass and woodwind style instruments that successfully replicate the feel

of their traditional counterparts. We would like to extend the Serial Interface with two

additional boards (stackable layers). The first is an improved version of our MIDI

controller board. The second is a digital sound sampling and playback board.

Software

We would also like to make the software more powerful through steps in three

important directions. First, we would like to provide ways of representing ideas and

information in new and novel ways. Second, we would like to allow users to interact

with the large body of music that already exists. Third, we would like to provide a

scripting tool that enables more sophisticated instruments and a broader set of activities.

While MICK’s interface allows users to program their instruments using standard

musical notation and mathematical formulas, it would be nice to provide tools that are

more imaginative and variable. For example, instead of modifying a standard

 33

mathematical function, the designer could simply draw a function, standard or unusual,

which could then be used in their mathematical mappings. Similarly, we would like

abstract ways of representing musical pitches and expressions. Such a representation

might make use of color mappings or constructions in three-dimensional spaces. Simply

expanding the realm of possibilities could spark an entire set of new ideas in people using

MICK, and thereby create an interesting new set of non-traditional instruments.

Allowing users to incorporate the large body of already existing musical

repertoire is also important. To this end we would like to incorporate tools for importing

MIDI files into the system. Users would then be able to play their instruments along with

those files. This type of interaction will engage users in a much richer performance

environment.

The last major improvement we suggest here has been thought about in great

detail. A tool for scripting a series of device commands would provide a significant

expansion to the current interface. Rather than only performing a single action, the

designer could trigger a set of actions. For example, the instrument would be able to

blink lights in some repeating sequence or perform a sequence of motor actions. This

expansion to MICK would be especially useful for creating general-purpose tools like an

interface for controlling a robot, driving a car, or playing a video game. The most

intricate aspect of the scripting environment is providing a method of multithreading the

commands so that the sensor actions can cause multiple sequences to interleave, as well

as supporting delays and procedure calls. Conveniently, most of these characteristics can

be maintained by storing the command sequences in separate lists for each sensor and

expanding calls in a lazy (waiting until required for execution) fashion. When a sensor

re-enters a range, the user will probably want to decide whether to append the sequence

 34

to the end of the list or clear the list and begin the sequence again. Other questions

include the use of global and local variables to avoid race conditions and other problems.

A further discussion of such a scripting language can be found in Appendix D.

Activities

This toolkit could provide a wide set of activities in both music and science

classrooms. For example, a very rich activity in a science class, which relates to the

musical instrument construction, could be to explore how everyday materials (such as

Play-DohTM, dish soap, fruits and vegetables, etc.) can be used to create novel sensors. In

turn, those sensors can be used to create very whimsical musical instruments. This could

naturally lead to a discussion about appropriate representations for notating and playing

music for such an instrument. Furthermore, this could lead to an interesting discussion

on the history of musical instruments and musical notation in the music classroom. In

this direction, an immediate future project is to develop detailed activity booklets and

support materials. In addition to schools, MICK can also be introduced into a clubhouse

or after-school setting to provide kids with a chance to explore their ideas and promote

their social interaction by playing the instruments they have created in small ensembles.

Conclusions

The focus of the project thus far has been on creating a powerful construction kit

that highlights the interplay between many important ideas in music, science, and

engineering design. In this thesis we presented the design rationale and implementation

of MICK. We also discussed our preliminary findings from a number of studies and

discussions with children, schoolteachers, and professional musicians. While we have

had a lot of encouraging results from these interactions, we believe that there remains a

 35

need for a careful study of what learning opportunities these tools afford, and what

implications they have for all aspects of our educational system.

For updates on the development of this project go to

http://llk.media.mit.edu/projects/MICK/.

 36

References

1 Andy Begel. Logoblocks: A graphical programming language for interacting with

the world. MIT Media Laboratory, 1996.

2 Cricket, see http://llk.media.mit.edu/projects/cricket/

3 Cricket Logo, http://llk.media.mit.edu/projects/ProgrammableBricks/Home.htm

4 F&B PICTM Programmer, see http://www.media.mit.edu/llk/projects/picdev/

5 Aaron Falbel. Constructionism: Tools to Build (and Think) With. LEGO DACTA,

1995.

6 Carol E. Foltz. Learning Through Design of Programmable Musical Instruments.

MIT Media Laboratory, 1996.

7 Logo Blocks, see http://llk.media.mit.edu/projects/summaries/bbp.shtml

8 Fred Martin, Bakhtiar Mikhak, and Brian Silverman. MetaCricket: A Designer’s Kit

for Making Computational Devices. IBM System Journal, VOL 39, NOS 3&4, 2000.

9 MicroWorldsTM Software, see http://www.microwolrds.com

10 MIDI Board, see http://www.media.mit.edu/~jrs/minimidi/

11 Music Shapers and Toys, see http://www.media.mit.edu/hyperins/projects.html

12 Seymour Papert. Mindstorms. Basic Books, Inc., New York, New York, USA, 1980.

13 Seymour Papert. What’s the Big Idea? Steps Toward a Pedagogy of Idea Power.

IBM Systems Journal, 2000.

14 PocketPCTM, see http://www.compaq.com/pocketpc/

 37

Appendix A: The Cricket

 To make this document self contained, in this appendix we will provide some

technical detail about the Crickets in so far as they influence the design of the Serial

Interface for this project. For a more detailed discussion of the Cricket system, please

refer to the MetaCricket Paper from which the contents of this appendix have been

reproduced (with permision).

The Cricket. The Cricket is a tiny, programmable computer (about the size of a

9-volt battery) that can directly control motors and receive information from sensors.

The Cricket evolved from earlier MIT “Programmable Brick” designs, which have led to

the recently introduced LEGOTM MindstormsTM Robotics Invention SystemTM with its

RCXTM Brick.

The Cricket is based on a Microchip PICTM microprocessor. Basic actuators like

DC (direct-current) motors and lightbulbs plug into one of the Cricket's two motor

outputs, and simple resistive sensors such as switches, photocells, and thermistors plug

into the Cricket's two analog voltage-sensing inputs.

All Cricket devices have a built-in bidirectional infrared communications channel,

which is used for Cricket-to-desktop communication (when downloading programs to a

Cricket, or viewing sensor data) and Cricket-to-Cricket communication. The Cricket also

includes a peripheral expansion port, or “bus port.” The use of this port greatly expands

the capability of the Cricket and is discussed in depth later in this paper.

 38

Feature Description

 Program size 2048 bytes of compiled code

Each user-level primitive function compiles to 1, 2, or 3 bytes

 Procedures Arbitrary number of numeric inputs allowed
May provide numeric return value

 Number system 16-bit integers
Add, subtract, multiply, divide, remainder, and modulus operators
Greater than, less than, equality operators
And, or, not, and exclusive-or operators
Random number generator

 Data and variables 16 available global variables
Local variables (limited by stack depth)
One-dimensional arrays (2048 bytes total array data,
 Persistent through power cycling

 Control structures If-then; if-then-else
Loops (repeat n times or infinite)
Waituntil (Boolean expression)

 Multitasking One foreground thread plus one background daemon
Daemon fires when provided Boolean expression makes
 False-to-true transition
15-bit background millisecond timer (4-millisecond ticks)

 Communications Integrated infrared (IR) program download protocol
Low-level primitives for IR communication between Crickets
Low-level primitives for peripheral bus communication

 Hardware-specific Motor power, direction
Analog input
Boolean input
Piezo tones

Table 2: Cricket Logo Feature Overview

 39

Of particular importance to this project is the set of bus device that have been created and

may be used with MICK. A partial listing of these devices is given below.

** DC Motor Controller

** Servo Motor Controller

** Numeric and Alphanumeric Displays

** Tri-Color LED and Mater Controller

** IR Transceiver Boards

** RF Transceiver Boards

** Additional Resistive Sensor Ports

** Optical Distance Sensor

** Reflectance Sensor

** LEGO Rotation Sensor

** Voice Recorder and Playback Module

** Heart Rate Monitor

** Sonar Range Sensor

** Clap and Pitch Sensor

** Keypad

** Digital Compass

** 2-axis Accelerometer

 40

Appendix B: Serial Interface

 Hardware

 Provided below is a schematic of the initial interface board. The interface is

based on a PIC16F876 processor and uses a MAX233 to communicate over the serial

cable with the PocketPCTM. Assembly (PICTM) code describing its operation is also

provided.

Figure 7: Serial Interface Block Diagram

The Serial Interface’s actual layout consists of two PCB boards stacked on top of each

other (utilizing header pins). One of the boards contains the PICTM and serial

componenets, the other board contains the sensor ports. These two PCB layouts are

shown on the following page.

 41

PICTM Board (top) PICTM Board (bottom)

Sensor Board (top) Sensor Board (bottom)

Assembled PICTM Board Assembled Interface

Figure 8: Serial Interface PCB Layout

 42

 Software

 The assembly code used on the PICTM will also be provided here. First however,

the mapping4 between the MicroChip PICTM op-codes and the op-codes used in the

Cricket assembler are provided.

In general:

** The w register has been renamed a. This convention is followed by almost every

other processor that only has a few registers.
** In the Cricket assembler the addressing mode is part of the op-code rather than an op-

code/syntax combination. E.g. the add instruction are

add x
addn x
addm

The first form adds the contents of ram location x to a. The "n" form (read as "add
number") adds a constant value to a. The "m" (read as "add to memory") form adds a
to a memory location.

The inc instructions are

inc x
linc x

The first form increments memory location x. The "l" form (read as "load and
increment") loads the contents of location x into a and then increments a.

The "mov" instructions have been renamed as load (lda) and store (sta) instructions -
again following the model of most other simple CPU's.

** A few other instructions (e.g. goto, call > bra, bsr) have been renamed.

** The order of the inputs to the bit instructions has been swapped.

addwf x,0 >> add x
addwf x,1 >> addm x
addlw x >> addn x

andwf x,0 >> and x
andwf x,1 >> andm x
addlw x >> andn x

iorwf x,0 >> or x
iorwf x,1 >> orm x
iorlw x >> orn x

subwf x,0 >> sub x
subwf x,1 >> subm x
sublw x >> subn x

xorwf x,0 >> xor x
xorwf x,1 >> xorm x
xorlw x >> xorn x

comf x,0 >> lcom x
comf x,1 >> com x

decf x,0 >> ldec x
decf x,1 >> dec x

decfsz x,0 >> ldecsz x
decfsz x,1 >> decsz x

incf x,0 >> linc x
incf x,1 >> inc x

incfsz x,0 >> lincsz x
incfsz x,1 >> incsz x

rlf x,0 >> lrol x
rlf x,1 >> rol x

rrf x,0 >> lror x
rrf x,1 >> ror x

swapf x,0 >> lswap x
swapf x,1 >> swap x

movf x,0 >> lda x
movf x,1 >> tst x

 44

movwf x >> sta x
movlw x >> ldan x

clrf x >> clr x
clrw >> clra

bcf x,b >> bclr b x
bsf x,b >> bset b x

btfsc x,b >> btsc b x
btfss x,b >> btss b x

call x >> bsr x
goto x >> bra x

retfie >> rti
return >> rts
retlw k >> rtv k
nop >> nop
clrwdt >> clrwdt
sleep >> sleep

We now provide the PICTM code:

; PocketPC Interface
; Sam Thibault
; samt@mit.edu
; Chris Lyon
; scooby@mit.edu
; 3-1-01

; watch out for $0c as temp register
; it is used for serial comm

; "hardware" registers
 [const @ 0]
 [const timer 1]
 [const pcl 2]
 [const status 3][const c 0][const z 2] [const bankl 5] [const
bankh 6]
 [const @@ 4]
 [const porta 5]
 [const portb 6][const portb-ddr $86]
 [const portc 7]
 [const portd 8]
 [const porte 9]
 [const pir1 $0C][const rcif 5]
 [const rcsta $18][const spen 7][const cren 4][const oerr 1]
 [const txreg $19]
 [const rcreg $1A]

 45

 [const t1 $20]
 [const transmit-byte $21]
 [const receive-byte $22]
 [const sensor-reading $23]
 [const bus-code $24]
 [const led-port portb]
 [const led-pin 4]
 [const option 1] ; bank 1
 [const txsta $18][const csrc 7][const txen 5][const sync 4][const
brgh 2]
 [const spbrg $19]
 [const tx-port portb][const tx 1]

 [const adresh $1e]
 [const adcon0 $1f] ;bank zero
 [const adcon1 $1f] ;bank one
 [const adon 0][const adgo 2]

 [const intcon $0b]
 [const gie 7]
 [const counter $25] ;$0c ; bit counter for byte in process
 [const bus-data $21]
 [const bus-port portb][const bus 2]
 [const bus-port-ddr portb-ddr]

start
 [bsr io-init]

loop
 [bsr serial-tyi]
 [bra dispatch]

dispatch
 [btsc 7 receive-byte]
 [bra bus-dispatch]
 [btsc 6 receive-byte]
 [bra midi-dispatch]
 [bra sensor-dispatch]
 [bra loop]

bus-dispatch
 [lda receive-byte]
 [sta bus-code]

 [btsc 0 bus-code] ; send 1 byte
 [bsr bus-disp-send1]
 [btsc 1 bus-code] ; send 2 bytes
 [bsr bus-disp-send2]
 [btsc 2 bus-code] ; send 4 bytes
 [bsr bus-disp-send4]

 [btsc 3 bus-code] ; receice 1 byte
 [bsr bus-disp-rec1]
 [btsc 4 bus-code] ; receive 2 bytes
 [bsr bus-disp-rec2]
 [btsc 5 bus-code] ; receive 4 bytes

 46

 [bsr bus-disp-rec4]

 [bra loop]

bus-disp-send1
 [bsr serial-tyi]
 [lda receive-byte]
 [sta transmit-byte]
 [bsr bus-tyo]
 [rts]

bus-disp-send2
 [bsr bus-disp-send1]
 [bsr bus-disp-send1]
 [rts]

bus-disp-send4
 [bsr bus-disp-send2]
 [bsr bus-disp-send2]
 [rts]

bus-disp-rec1
 [bsr bus-tyi]
 [lda bus-data]
 [sta transmit-byte]
 [bsr serial-tyo]
 [rts]

bus-disp-rec2
 [bsr bus-disp-rec1]
 [bsr bus-disp-rec1]
 [rts]

bus-disp-rec4
 [bsr bus-disp-rec2]
 [bsr bus-disp-rec2]
 [rts]

sensor-dispatch
 ;full return not implemented but individual readings are for 0-4
 [btsc 2 receive-byte] ;sensor 4
 [bra read-sensore]
 [btsc 1 receive-byte] ;sensor 2 or 3
 [bra sensor-dispatch2]
 [btsc 0 receive-byte] ;sensor 0 or 1
 [bra read-sensorb]
 [bra read-sensora]
sensor-dispatch2
 [btsc 0 receive-byte]
 [bra read-sensord]
 [bra read-sensorc]

sensor-return
 [lda sensor-reading]
 [sta transmit-byte]
 [bsr serial-tyo]
 [bra loop]

 47

read-sensora
 [ldan 1] ;chselect0 + adon
 [bsr get-sensor]
 [bra sensor-return]

read-sensorb
 [ldan 9] ;chselect1 + adon
 [bsr get-sensor]
 [bra sensor-return]

read-sensorc
 [ldan $11] ;chselect2 + adon
 [bsr get-sensor]
 [bra sensor-return]

read-sensord
 [ldan $19] ;chselect3 + adon
 [bsr get-sensor]
 [bra sensor-return]

read-sensore
 [ldan $21] ;chselect4 + adon
 [bsr get-sensor]
 [bra sensor-return]

get-sensor
 [sta adcon0] ; turn on converter
 [ldan $19] [bsr delay-loop] ; wait 100 microsec acquisition
time
 [bset adgo adcon0] ; start the conversion
sens20 [btsc adgo adcon0][bra sens20] ; wait until done
 [lda adresh][sta sensor-reading] ; read and return the result
 [rts]

midi-dispatch
 [btsc 0 receive-byte]
 [bra midi2-dispatch]
 [bra midi3-dispatch]

midi2-dispatch
 [bsr serial-tyi]
 [lda receive-byte]
 [bsr midi-out]

 [bsr serial-tyi]
 [lda receive-byte]
 [bsr midi-out]

 [bra loop]

midi3-dispatch
 [bsr serial-tyi]
 [lda receive-byte]
 [bsr midi-out]

 [bsr serial-tyi]

 48

 [lda receive-byte]
 [bsr midi-out]

 [bsr serial-tyi]
 [lda receive-byte]
 [bsr midi-out]

 [bra loop]

serial-tyi
 [clr rcreg]
 [bclr rcif pir1] ; clear the flag bit
 [bset cren rcsta]
s-tyi-mid
 [btss rcif pir1][bra s-tyi-mid]
 ; read is complete
 [lda rcreg]
 [sta receive-byte]
 [clr rcreg]
 [bclr oerr rcsta]
 [rts]

serial-tyo
 [bset bankl status]
 [bset txen txsta]
 [bclr bankl status]
 [lda transmit-byte][sta txreg]
 [bset cren rcsta]
 [rts]

midi-out
 [sta t1]
 [bclr tx tx-port]
 [ldan 14][bsr delay-loop]
 [bsr so][bsr so][bsr so][bsr so]
 [bsr so][bsr so][bsr so][bsr so]
 [bset tx tx-port]
 [ldan 14][bra delay-loop]

so [ror t1]
 [bclr tx tx-port]
 [btsc 0 status]
 [bset tx tx-port] [nop] [nop] [nop]
 [ldan 13]
delay-loop
 [addn -1][btss z status][bra delay-loop]
 [rts]

io-init
 [bclr bankh status]

 [bset bankl status] ;select bank 1

 ; Init baud rate for USART Synchonous master
 ;[ldan 25][sta spbrg] ; 9600 baud on 4MHz xtal
 [ldan 51] [sta spbrg] ; 9600 baud on 8MHz xtal

 49

 ; Enable port
 [bclr sync txsta][bset brgh txsta]

 [ldan $00] [sta adcon1] ; set ra0,ra1,ra2,ra3,ra4 to analog

 [bclr bankl status]
 [bset spen rcsta]
 [bset bankl status]

 [bset csrc txsta]

 [bclr tx tx-port]

 [bclr led-pin led-port]
 [bclr bus bus-port]

 [bclr bankl status] ; back to bank 0

 [bset bus bus-port]
 [bset tx tx-port]

 [clr transmit-byte]
 [clr receive-byte]

 ; set to read port?
 [ldan bus-port-ddr][sta @@]
 [bclr bus bus-port]
 [bclr bus @]
 ;[bset bus bus-port]
 [bset bus @]

 [rts]

; The following subroutine is the 8MHz version of the standard bus
; data receiving subroutine. The form of a byte is 100 usec low time
; (to allow for interupt latency) start bit(1) + 8 data bits + stop
; bit (0 for cmnd 1 for data). Each bit is exactly 10 usec long, but
; the value is valid only for the last eight microseconds. This code
; samples the bits between 3 and 5 us into each bit. This allows for
; an interrupt to delay the routine by up to 4.5us and still allow the
; data to be received. The subroutine was tested with delays of 9
; instruction cycles and removal of one delay instruction; if the delay
; is 10 instructions or two delay instructions are removed, the data
; may not be received correctly. The data is returned in bus-data.
; The inverse of the stop bit is returnted in the carry bit
; commands have a 0 stop bit -> carry set
; data has a 1 stop bit -> carry clear
; 21 July 1999 Jan Malasek

bus-tyi ;[bset led-pin led-port]
 [btsc bus bus-port][bra bus-tyi]
btyi20 [btss bus bus-port][bra btyi20] ; for sync edge
 [ldan 8][sta counter]
 [bsr an-rts]
 [bsr an-rts]
 [bsr an-rts]
 [bset led-pin led-port]; [nop]

 50

btyi30 [nop][nop][nop]
 [nop][nop][nop]
 [ror bus-data]
 [bclr 7 bus-data]
 [btsc bus bus-port]
 [bset 7 bus-data]
 [bsr an-rts]
 [nop][nop][nop]
 [decsz counter]
 [bra btyi30]
 [bsr an-rts]
 [bsr an-rts]
 [bclr led-pin led-port] ; <-- test thingy
 [bset c status]
 [btsc bus bus-port][bclr c status] ; no stop bit -> carry clear
an-rts [rts]

bus-tyo
 ; set to write port
 [ldan bus-port-ddr][sta @@]
 [bclr bus bus-port]
 [bclr bus @]

 ; go low for 100 us sync time
 [bclr bus bus-port]
 [ldan 50] [bsr delay-loop]

 ; send start bit
 [bset bus bus-port] [nop]
 [bsr bus-delay]
 [bclr bus bus-port]

 ; send bit 0-7
 [btsc 0 transmit-byte]
 [bset bus bus-port]
 [bsr bus-delay]
 [bclr bus bus-port]

 [btsc 1 transmit-byte]
 [bset bus bus-port]
 [bsr bus-delay]
 [bclr bus bus-port]

 [btsc 2 transmit-byte]
 [bset bus bus-port]
 [bsr bus-delay]
 [bclr bus bus-port]

 [btsc 3 transmit-byte]
 [bset bus bus-port]
 [bsr bus-delay]
 [bclr bus bus-port]

 [btsc 4 transmit-byte]
 [bset bus bus-port]
 [bsr bus-delay]
 [bclr bus bus-port]

 51

 [btsc 5 transmit-byte]
 [bset bus bus-port]
 [bsr bus-delay]
 [bclr bus bus-port]

 [btsc 6 transmit-byte]
 [bset bus bus-port]
 [bsr bus-delay]
 [bclr bus bus-port]

 [btsc 7 transmit-byte]
 [bset bus bus-port]
 [bsr bus-delay]
 [bclr bus bus-port]

 ; command bit?
 [btss 7 bus-code]
 [bset bus bus-port]
 [bsr bus-delay]
 [bclr bus bus-port]

 ; stop bit
 [nop] [nop] [nop]
 [bsr bus-delay]

 ; command bit maintanence
 [bclr 7 bus-code]

 ; set to read port
 [bset bus @]

 [rts]

bus-delay ; to get 10 us bits on bus line
 [ldan 2]
 [bsr delay-loop] [nop]
 [rts]

 52

Appendix C: MICK User Manual

 This appendix provides a brief instruction manual for using MICK with

descriptions of the many effects that can be produced.

 Getting Started. When MICK is started a screen with a large logo will appear.

Before starting an instrument it is a good idea to test that the Serial Interface and MIDI

are working properly. To do this, select Test Midi from the Instrument menu. You

should then hear a note played through the MIDI. If this does not work, check that power

is supplied and that the interface is connected to the PocketPCTM.

 Now, select New from the File menu. (Note: you could also open a previously

saved file by using the Open command.) When you start this new instrument a dialog

box will appear asking what type of sensor you would like to add as the first sensor in

your instrument. Choose the appropriate sensor from the options displayed. Once the

first sensor has been selected, the main screen will display the sensor as an icon, with

associated options and information displayed in a row across the screen. The icons that

represent the different sensors are:

Touch Light Temperature Distance

 Setting the Location

To set the location of a sensor, click on the gray box immediately to the right of

the sensor icon. A dialog box will appear where the sensor’s location can be specified in

 53

terms of bus location and port number. For bus device sensors like a distance sensor,

leave the port field set to 0.

 Setting the MIDI voice and channel

 The next box to the right of the location box allows the MIDI voice associated

with the sensor to be selected. Clicking on that icon will open a dialog box in which you

can set the channel and voice for the instrument. Note that modifying the voice used by

some channel will affect all sensors that use that channel.

 Deleting a Sensor

 On the far right of the screen is a box with an “X”. Clicking on this box will

remove the sensor and all its actions from the instrument. To add a new sensor, select

Add Sensor from the Instrument menu.

 Adding Sensor Actions. The remaining icons that have a “+” symbol contained

inside them allow you to add actions and musical effects to the sensor. Clicking on one

of these icons will open a dialog box that allows the action to be specified in detail.

 Playing Notes and Chords

 The first action allows for the playback of notes or chords. When the dialog box

opens there are two main sections. At the top are boxes that allow the range to be

specified. Use these boxes to specify the values inside which this action to occur. For

example, if the range is from 100 to 200, the note/chord will be played if the sensor’s

value is in that range. To add a note to be played click the add note button. To move

between notes click on the next button. A selected note can be removed by clicking the

 54

delete note button. To modify the pitch of the selected note click on raise pitch or lower

pitch. Finally, at the bottom of the dialog is a check box where the root pitch can be

played. The root pitch is a special note that can be modified by other actions. The shift

pitch action described next will talk more about this effect in detail. When finished

modifying the note, click the ok button in the top right corner of the screen.

Once you leave the dialog box a new row of icons will appear indented

underneath the sensor you added the action. This indention will allow you to identify

which actions are associated with what sensors. To modify the actions later click on the

icon at the left of the actions row.

 Shifting the Root Pitch

The next action that can be added (represented with a sliding note) allows the root

pitch to be modified. Again the first part of the dialog box allows the range for this

action to occur. The rest of the dialog allows the direction and amount of the shift to be

specified. The root pitch itself is specified from the selection Root pitch in the Instrument

menu.

 Playing Wave Files

The next action allows a wave file to be specified for playback. Again enter the

range, as well as the name of the wave file to play back. The wave file will be played

through the internal speaker in the PocketPCTM.

 Activating Motors, Displays, and Tri-color LEDs

The three actions after playing wave file are all used for non-musical output.

These actions allow the interface to activate motors, displays, and tri-color leds,

 55

respectively. In these dialog boxes, as the others, select the range for the action to occur

first. Next, since all these devices are bus devices, select their bus location. Finally the

specifics of the action, either motor direction or display detail, are entered. Again, click

ok to finish.

 Executing Scripting Commands

The icon with a turtle is intended for future use. It will allow scripting commands

to be specified.

 Performing Functional Mappings

The final action (picturing a graph) allows mathematical mappings to be

specified. After selecting the range, select the type of function to use. The two values m

and b will be used as described in the table 3. At the bottom of the screen it is possible to

select the type of outputs. You may choose from note, volume, display, and led

mappings.

Function Relationship to m and b

 Linear

y = m * x + b

 Inverse

y = m / x + b

 Square

y = m * x2 + b

 Square Root

y = m * sqrt(x) + b

Table 3: Mapping Functions

 56

Playback and Finishing Up. Once the instrument has been set up with sensors

and actions its operation can be started by selecting Run from the Instrument menu. The

instrument can also be saved using the options under the File menu. It is likely that an

instrument will have more sensors and actions specified than will fit on the screen of the

PocketPCTM. If this occurs, use the scroll up and scroll down buttons to move the sensors

and actions that are currently displayed.

 57

Appendix D: MICK Scripting Primitives

In order to allow a series of actions to be performed on a single sensor event,

MICK could allow users to program in a logo-like language. This language can perform

all the state-setting actions that MICK provides, such as playing a note or turning on a

motor, in a series of commands that may include timing delays, repeated sequences, or

other control structures. Procedures may be declared as well. A sample set of

instructions is given in table 3 below.

In order to allow sensor events to be able to trigger several interleaving series of

MICK-Script sequences it is necessary to implement some form of multi-threading. To

accomplish this objective, each sensor event is given its own queue for scripting

commands. When that sensor event is triggered, the commands the user has connected

with that event are added to that sensor event’s queue. On each pass over the sensors

while the instrument is running, each queue executes one instruction. To help avoid

memory overflows due to recursive calls, instructions could be executed in a lazy

manner. That is, a call to a procedure will not be expanded on the queue until that

procedure call is reached. Notice, however, that MICK does not provide any strong

assurances on the safety of the command sequences. If one thread sets a motor and then a

different thread sets the motor to a different value. The most recent setting will win.

Therefore, users must use care in using such a scripting feature.

 58

Scripting Primitive Explanation
To proc-name (:arg1 :arg2 …)
 body
end

Creates a procedure named proc-name.
This procedure may receive arguments
named by variables starting with colons in
the declaration. The body of the procedure
is included before the end keyword.

Repeat num [body] Repeats instructions in body of repeat
statement num times.

if cond [body] Tests the condition cond. If the value of
cond is true, body is executed.

Ifelse cond [body1] [body2] Tests the condition cond. If the value of
cond is true, body1 is executed, otherwise
body2 is executed.

Wait num Does not perform an instruction for num
instructions. (skips instruction cycles)

Display num Displays number num on display bus
device.

Sensor0 Returns the value of sensor in port 0.
Sensor1 … sensor7 Returns the value of sensor in port 1 - 7.
Sensor color port Returns the value of sensor in port port on

color color sensor port bus device.
Motor color port direction power Sets motor in port port on color color

motor bus device to direction direction and
power power. direction is 0 or 1. power is
0-7

Note-on pitch channel …
Melody filename …
Clear-thread Clear this sensor-event’s thread
+ - * / Basic mathematical operators.
etc. etc.

Table 4: MICK Scripting Primitives

 59

Appendix E: MIDI Instruments and Effects

This appendix provides tables of the instruments available on the standard MIDI

channels (1-9 and 11-16), as well as a listing of the drum sounds for channel 10, which is

restricted to those drum events, followed by descriptions of the variety of MIDI effects.

PC# Instrument name PC# Instrument name PC# Instrument name PC# Instrument name

1 Acoustic Grand Piano

2 Bright Acoustic Piano

3 Electric Grand Piano

4 Honky-tonk Piano

5 Electric Piano 1

6 Electric Piano 2

7 Harpsichord

8 Clavi

33 Acoustic Bass

34 Electric Bass (finger)

35 Electric Bass (pick)

36 Fretless Bass

37 Slap Bass 1

38 Slap Bass 2

39 Synth Bass 1

40 Synth Bass 2

65 Soprano Sax

66 Alto Sax

67 Tenor Sax

68 Baritone Sax

69 Oboe

70 English Horn

71 Bassoon

72 Clarinet

97 FX 1 (rain)

98 FX 2 (soundtrack)

99 FX 3 (crystal)

100 FX 4 (atmosphere)

101 FX 5 (brightness)

102 FX 6 (goblins)

103 FX 7 (echoes)

104 FX 8 (sci-fi)

9 Celesta

10 Glockenspiel

11 Music Box

12 Vibraphone

13 Marimba

14 Xylophone

15 Tubular Bells

16 Dulcimer

41 Violin

42 Viola

43 Cello

44 Contrabass

45 Tremolo Strings

46 Pizzicato Strings

47 Orchestral Harp

48 Timpani

73 Piccolo

74 Flute

75 Recorder

76 Pan Flute

77 Blown Bottle

78 Shakuhachi

79 Whistle

80 Ocarina

105 Sitar

106 Banjo

107 Shamisen

108 Koto

109 Kalimba

110 Bag Pipe

111 Fiddle

112 Shanai

17 Drawbar Organ

18 Percussive Organ

19 Rock Organ

20 Church Organ

21 Reed Organ

22 Accordion

23 Harmonica

24 Tango Accordian

49 String Ensemble 1

50 String Ensemble 2

51 Synth Strings 1

52 Synth Strings 2

53 Choir Aahs

54 Voice Oohs

55 Synth Voice

56 Orchestra Hit

81 Lead 1 (square)

82 Lead 2 (sawtooth)

83 Lead 3 (calliope)

84 Lead 4 (chiff)

85 Lead 5 (charang)

86 Lead 6 (voice)

87 Lead 7 (fifths)

88 Lead 8 (bass + lead)

113 Tinkle Bell

114 Agogo

115 Steel Drums

116 Woodblock

117 Taiko Drum

118 Melodic Tom

119 Synth Drum

120 Reverse Cymbal

25 Acoustic Guitar (nylon)

26 Acoustic Guitar (steel)

27 Electric Guitar (jazz)

28 Electric Guitar (clean)

29 Electric Guitar (muted)

30 Overdriven Guitar

31 Distortion Guitar

32 Guitar Harmonics

57 Trumpet

58 Trombone

59 Tuba

60 Muted Trumpet

61 French Horn

62 Brass Section

63 Synth Brass 1

64 Synth Brass 2

89 Pad 1 (new age)

90 Pad 2 (warm)

91 Pad 3 (polysynth)

92 Pad 4 (choir)

93 Pad 5 (bowed)

94 Pad 6 (metallic)

95 Pad 7 (halo)

96 Pad 8 (sweep)

121 Guitar Fret Noise

122 Breath Noise

123 Seashore

124 Bird Tweet

125 Telephone Ring

126 Helicopter

127 Applause

128 Gunshot

Table 5: General MIDI Melodic Voices

 60

Note Drum Sound Note Drum Sound
B0 Acoustic Bass Drum B2 Ride Cymbal 2
C1 Bass Drum 1 Middle C (C3) Hi Bongo
C#1 Side Stick C#3 Low Bongo
D1 Acoustic Snare D3 Mute Hi Conga
Eb1 Hand Clap Eb3 Open Hi Conga
E1 Electronic Snare E3 Low Conga
F1 Low Floor Tom F3 High Timbale

F#1 Closed Hi-Hat 1 F#3 Low Timbale
G1 High Floor Tom G3 High Agogo

Ab1 Pedal Hi-Hat 1 Ab3 Low Agogo
A1 Low Tom A3 Cabasa
Bb1 Open Hi-Hat 1 Bb3 Maracas
B1 Low Mid Tom B3 Short Whistle
C2 Hi Mid Tom C4 Long Whistle
C#2 Crash Cymbal 1 C#4 Short Guiro
D2 High Tom D4 Long Guiro
Eb2 Ride Cymbal 1 Eb4 Claves
E2 Chinese Cymbal E4 Hi Wood Block
F2 Ride Bell F4 Low Wood Block

F#2 Tambourine F#4 Mute Cuica
G2 Splash Cymbal G4 Open Cuica

Ab2 Cowbell Ab4 Mute Triangle
A2 Crash Cymbal 2 A4 Open Triangle
Bb2 Vibraslap

Table 6: General MIDI Percussion Sounds (channel 10)

Effect Description
Modulation Wheel Used to control pitch modulation (vibrato) level on a specified channel

Volume Used (in conjunction with Expression) to control overall volume of notes

on a specific channel

Pan Used to control left/right output placement for notes on specified channel

Expression Used (in conjunction with Volume) to control overall volume of notes on
a specific channel

Damper Pedal (Sustain) Allows notes on a specified channel to continue sounding after the
corresponding notes have been released. Notes are terminated when
damper pedal is turned off.

Sostenuto Similar to Damper Pedal, except Sostenuto only effects note which were
already active when Sostenuto is turned on.

Effect 1 Depth (Reverb) Used to adjust the amount of reverb effect applied to sounds played on a
specific channel

Effect 2 Depth (Chorus) Used to adjust the amount of chorus effect applied to sounds played on a
specific channel

Table 7: General MIDI Effects

