
The Tower System: 
A Toolkit for Prototyping Tangible User Interfaces 

Bakhtiar Mikhak, Christopher Lyon, Tim Gorton 
Grassroots Invention Group 

MIT Media Lab 
20 Ames Street 

Cambridge, MA 02139, USA 
{mikhak, scooby, tgorton}@media.mit.edu 

  
ABSTRACT 
A key strength of the CHI community is its focus on 
realizing designs through the construction of functioning 
prototypes. However, building such prototypes of tangible 
user interfaces (TUIs) currently requires considerable 
technical knowledge and typically has a long development 
cycle. As the CHI community continues to expand and 
include practitioners from a broader range of backgrounds, 
there is a growing need to provide our community with a 
powerful, flexible, and extensible toolkit for the rapid 
prototyping of TUIs. 
To meet the needs of the most demanding applications, we 
have created the Tower system, which includes a wide 
variety of hardware modules and software libraries for 
sensing, actuation, communication – including Ethernet, 
IR, and RF – and visual and audio output. Furthermore, we 
provide technically experienced designers with the 
hardware and software tools to incorporate new 
functionality into the system with relative ease. 
Keywords 
Development tools, toolkits, programming environments, 
UIMS and UI design environments, end-user programming, 
prototyping, interaction design, ubiquitous computing and 
smart environments, software architecture and engineering. 
INTRODUCTION 
Infusion of computation into every aspect of our lives is 
inevitable, but the forms that computation will take is an 
active area of research and will be shaped by people’s 
needs and desires in the variety of contexts in which they 
live, work and play. By the end of this decade, computers 
will be embedded in everyday objects all around us: our 
home appliances and furniture, our communication and 
transportation devices, and even our books and our 
clothing. In this time of rapid change, the CHI community 
– as a premier interdisciplinary group of researchers,  

 

  
Figure 1: The Tower  

practitioners and educators who continually design and 
build robust realizations of what they envision as the best 
that the digital revolution can offer – plays a critical role in 
guiding these efforts. 
Rapid prototyping is at the heart of the vitality of the CHI 
community and it is what distinguishes us as a group that is 
interested in the quality of human experiences in a 
technology rich world. The best works from our members 
highlight the idea that one of the most exciting times in the 
life of any technology is the point at which artists and 
designers elevate it to a true medium of expression and use 
it to create the kind of experiences that celebrate the things 
that makes us uniquely human. From that point on, the 
evolution of a technology that enjoys such a success is 
often deeply intertwined with the expectations and 
sensibilities of the artists and designers who are pushing the 
limits of the medium to realize its full creative potential. [1, 
2, 5, 8]  

 
 

As it is immediately evident when one reviews the best 
ideas that our community has produced, many CHI 

 

- 1 - 



designers have seized the opportunity afforded by newly 
available technologies to produce more and more 
responsive and interactive artifacts and spaces. In their new 
designs, they pay close attention to the quality of the 
behaviors and modes of interaction as well as to the 
aesthetics of the static structures they create. Computation, 
while enriching the range of functions offered, makes it 
more challenging to achieve harmony between form and 
function. A new generation of technically savvy designers 
has emerged to embrace this challenge and is actively 
expanding and fundamentally rethinking traditional 
guidelines for good design.  
This clearly is an exciting time to be a designer, but 
unfortunately, many talented designers, who are not 
accustomed to formulating their design concepts to 
engineers before iterating on them, are excluded from full 
participation in our community and that is something we 
cannot afford. Today, there are many software tools for 
graphic designers, animation artists, and digital-effect 
designers in general, but there have been few hardware 
systems that allowed designers to easily incorporate 
sensing, actuation, and programmable logic into their 
prototypes and designs. 
It is therefore natural to contemplate designing toolkits that 
would welcome and support the engagement of a 
community of innovative, aspiring digital-interaction 
designers with CHI at a more grassroots level. In fact, a 
close examination of the contributions made to and by the 
CHI community provides ample evidence that it is possible 
to create toolkits that make it possible to prototype every 
point in the large – maybe infinite – space of imaginable 
interaction scenarios with carefully design extensible 
modular toolkits with a finite number of critical parts. This 
vision is the inspiration for the work presented in this 
paper, based on our own experience at the MIT Media 
Laboratory, where an instance of the toolkit we are 
proposing gives us confidence in the broader applicability 
of our approach and tools. 
Indeed, the MIT Media Laboratory where we work is an 
ideal representation of the sort of culture in which rapid, 
functional prototypes are taken seriously. These prototypes, 
which serve as objects of reflection, are critical in the 
evolution of most projects. The prototypes anchor 
discussions between lab sponsors and researchers, allowing 
projects to move from an academic level to their practical 
implementation. In other words, the prototype 
demonstrations make ideas concrete and push them 
forward. And we think this toolkit can make a similar 
contribution to the CHI community.   
GUIDING DESIGN PRINCIPLES 
In order to provide a flexible toolkit applicable to the wide 
range of projects undertaken by the CHI community, we 
followed several guiding principles in the design of the 
Tower system. The first was the notion that the system 
must by both accessible to novices and provide enough 
expressive power and flexibility for the most demanding 

applications. In addition to building self-contained 
hardware modules with simple programming interfaces, we 
drew upon the long tradition of research in using the Logo 
programming language with novices.  
We also insisted that the design of the Tower system be 
modular wherever possible in order to provide for future 
expansion of hardware and software components, as well as 
making it possible to use only the functionality needed for 
any particular application. This also allows novices to build 
fluency with the system by providing a path for them to 
explore the components of the system. 
Transparency has also been an important principle of the 
design to illuminate what components of the system are 
easily modifiable by end-users and what design choices 
make this possible. Our aim is to help users understand 
how the system can be made to fit their requirements and 
provide paths for doing so.  
The final, key principle guiding the Tower system’s design 
was the need to make the system easily extendible, even by 
novices. We have by no means provided direct support for 
all of the possible needs of the CHI community’s 
imagination. However, we have provided the means for 
novices to create new layers for the Tower system using the 
same transparent tools that make the Tower itself 
accessible. Those with technical expertise can further 
modify the system at almost any level. 
APPLICATION SCENARIOS 
In order to illustrate the potential usefulness of the Tower 
system as a toolkit for the CHI community, we will 
examine several imagined examples of CHI projects and 
explore how they might be constructed currently and what 
advantages the Tower system would provide. 
Shared artifact 
We will begin by imagining a project involving a shared 
artifact that sits on the desks of several close friends or 
family members at their workplaces. Each artifact would 
detect when its owner was present in his office and 
communicate that information to the other artifacts over the 
Internet, causing them to display a colored light indicating 
the presence of that person. Each artifact might also have 
dials to control what color appears on others when its 
owner is present, providing a way for the owner to indicate 
his mood to the others. We needn’t spend much effort 
justifying this specific project, but this and the others we 
will examine will serve as sufficiently complex projects to 
explore the potential usefulness of the Tower system to 
speed the prototyping process. 
Using traditional tools, the artifact described above might 
be prototyped using an interface to a desktop computer, if 
one is available at each target location, or an embedded 
platform such as a Pocket PC. In either case, it is nontrivial 
to interface the needed sensors and colored lights to the 
computing platform. One possible approach is to use a 
Parallax BASIC Stamp, using the BASIC Stamp’s serial 
port to communicate with a desktop computer or Pocket PC 

- 2 - 



and using the BASIC Stamp’s I/O pins to connect to an 
analog-to-digital converter chip, a commercially-available 
motion detector module, and several colored LED’s. This 
requires a fair amount of technical expertise in connecting 
the components and writing code to communicate with the 
analog-to-digital converter, simultaneously control the 
brightness of a number of LED’s using pulse width 
modulation, and communicate with the computer. The 
designer would then need to write desktop or Pocket PC 
software to communicate with the BASIC Stamp, as well as 
writing a server and client application to exchange color 
information with the other artifacts. This code would also 
require substantial technical expertise. 

Prototyping this system with traditional technology would 
require a set of embedded controllers in order to maintain 
the pulse width modulation on all twenty servos 
simultaneously and handle the user interaction. In order to 
receive sensor input from devices other than buttons, an 
analog-to-digital converter chip would again be necessary. 
Using a product like the Basic Stamp would require some 
way for all the Stamps to communicate to coordinate this 
activity, a difficult project even for someone with technical 
experience. Even if this were done, modifying or adding to 
such a complex system would likely prove difficult, 
limiting the possibilities for future research. 
A designer using the Tower system could use several Servo 
layers, each of which can simultaneously control eight 
servos. A sensor layer could be used to obtain the needed 
sensor input, and a relatively straightforward Logo program 
could be written for the Foundation to wait for a visitor to 
indicate his purpose and modify an appropriate servo. 
Adding functionality would be relatively straightforward as 
well; for example, a designer who had connected a motion 
sensor to a prototyping layer for the previous project could 
simply reuse that layer in this project to determine when the 
occupant was actually in the room and provide some 
information to a visitor about how long he had been gone. 

By contrast, the hardware components of the Tower system 
support much of the needed functionality directly. The 
designer could choose to use the Rabbit Foundation, which 
is capable of TCP/IP communication by connecting directly 
to an Ethernet network. She could then add a Sensor layer, 
which provides eight analog inputs, and several small 
Tricolor modules, each of which is capable of displaying 
and fading between millions of colors. There is no motion 
detector module in the Tower system, but a cheap, 
commercially available module would simply need to be 
connected to one of the Tower’s I/O pins on a Prototyping 
layer, requiring little expertise. The designer could then 
experiment with controlling each of the Tricolor modules 
and obtaining data from the sensors by typing simple 
commands such as “display sensor 1” in the Tower 
Development Environment’s command center. She could 
then use similarly transparent Logo control structures and 
network primitives to build the necessary network 
communication and other behaviors. Furthermore, the other 
components of the Tower system would make it easy to 
iterate this design by adding other features to the code and 
hardware. As one example, if the designer wanted to store 
data about the state of the artifact over time in order to 
examine its use in the field, she could add an EEPROM 
storage layer and use the provided library functions such as 
“ee-write <chipnumber> <position> <value>” to store data.  

Tagged Objects 
Embedded tags have become excellent tools for associating 
information with physical objects, and these tags can take 
on added value to researchers when combined with the 
embedded computation system that the Tower makes 
available. For example, we might imagine a space designed 
to augment children’s interest in storytelling by using 
physical toys and artifacts. Embedded ID tags on these 
items combined with tag readers located in various objects 
in the physical space can provide a great deal of 
information about the children’s placement of objects but 
tells little about what children do with the objects while 
holding them. One approach might be to add an 
accelerometer to the objects and communicate this 
information back to the system with the tag readers to 
provide some feedback to a child, such as moving objects 
in the environment with servo motors or using a desktop 
computer display to suggest material for the child’s story 
with background scenes or other images. 

Doorway Interaction and Ambient Display 
The second scenario we will examine will consist of 
creating an interface for a doorway to collect information 
about people who visit while the occupant is away, 
combined with an ambient display inside the office to 
indicate some information about the missed visitors. We 
might envision some means for the visitors to indicate 
some simple information about the purpose of their visit, 
such as “need to talk to you,” “just saying hi,” and perhaps 
a third option. Inside the office, we might create a 
collection of around twenty small acrylic cutouts with 
several styles to indicate which of the purposes a visitor 
selected. When a visitor selected a purpose at the door, a 
servo would raise an appropriate cutout inside the office. 
When the occupant returned, the cutouts would serve as an 
ambient display of the purposes of the visitors he missed.  

Using traditional tools, the tag readers might be connected 
to a desktop computer via a serial port, though the number 
of serial ports on the desktop limits this option. Using 
embedded processors such as the Basic Stamp to 
communicate with the tag readers again leads to problems 
in getting the processors to work together. Communicating 
accelerometer data back to this system would require some 
sort of embedded processor in the items being moved, 
combined with a radio transceiver and interface to the 
accelerometer. In order to read the accelerometer data, the 
designer would have to either use an analog-to-digital 
converter chip or write code to count the duty cycle of the 
accelerometer’s signal. The designer would also have to 

- 3 - 



Foundation Hardware write a program to interface to the radio transceiver and 
create another transceiver system on the receiving end and 
find a way to interface that to the PC as well (noting that 
serial ports would already be at a premium.)  

The Tower Foundations contain the core Processors, as 
well as all of the support circuitry needed to get a simple 
application up and running.  The modular nature of the 
Tower system is due to the fact that every I/O line from the 
main processor is passed up through the entire stack to 
every connected layer. Two 18-pin headers provide 
connections for all 33 standard I/O pins on the PIC 
Foundation and 13 I/O pins on the Rabbit Foundation, as 
well as primary and secondary power busses and an 
electrical ground connection.  

The Tower could be used both to coordinate the tag readers 
and movement in the environment as well as provide a 
platform for wireless data collection from the items 
themselves. Connecting many tag readers to a single tower 
is straightforward by using as many Serial layers as needed, 
each of which contains four buffered serial ports. The RF 
communication layer could easily be used to transmit the 
accelerometer data from the instrumented items, and the 
accelerometer itself could either be read by using the 
Sensor layer or by connecting its output to one of the 
Tower’s I/O pins and writing Logo code to count the duty 
cycle. The Tower’s size may admittedly make it 
cumbersome to embed in some tagged items, but this 
system would make it easy to rapidly develop and iterate an 
initial prototype of such a system. 

 
SYSTEM DESIGN 
We have created a fully modular computational 
construction kit to simplify the design of embedded 
hardware systems.  Physically, the Tower is comprised of a 
Foundation module containing the core processor, and 
other boards that stack on top of it, providing a wide range 
of functionality including sensing, actuation, data storage, 
and communication.  In addition to the growing set of 
layers created by our research group, we have also provided 
the necessary prototyping tools to make it easy for anyone 
to add their own new layers to the system as specialized 
applications demand. 

Figure 2: Foundation Connector Pinout 
Each layer uses four 18-pin surface-mount connectors, with 
two female headers on the top of the board, and two male 
headers on the bottom. The pinout of these connectors can 
be seen in Figure 2. 
Each Tower layer has its own, independent PIC 
microcontroller. Communication between the main 
processor and the layer microcontrollers is accomplished 
via the industry-standard I2C serial protocol. This 2-wire 
protocol contains clock and data lines, which are located on 
breakout pins RC3 and RC4 respectively. We have extended our prior work on embedded virtual 

machines (VM’s) for the Logo programming language [7] 
to create a Logo VM for each Foundation, which is 
programmed onto its processor core as firmware. These 
VM’s hide the technical details of each Foundation’s 
processor to provide high-level language primitives for 
programming the Foundation, including control flow, math, 
control of I/O pins, variables, and I2C communication with 
the layers. Virtual machines written for Foundations with 
more powerful processors can incorporate additional 
capabilities, such as multitasking, network communication, 
floating-point math, and string manipulation, while 
providing a common programming style to users. 

Power can be drawn off of either a primary or secondary 
power bus, each of which can be powered separately by the 
Foundation layers. Modules that anticipate higher power 
drain, such as the Servo Motor module, are designed with 
switches to allow the user to switch which bus they are 
powered off of. 
All Foundations also have a serial programming header on-
board, which directly interfaces to a serial port on the core 
processor and allows the easy download of software 
through the serial line, as an alternative to the need for 
expensive programming hardware sold by the companies 
that manufacture the processors themselves.  To enter the 
programming mode, a small white button on the 
Foundation is held down as the system is turned on.  The 
white button also allows the user to start and stop the 
execution of the program they have downloaded.  

Finally, we have written a prototype of the Tower 
Development Environment, a common application for 
programming the existing types of Foundations using the 
VM’s described above, loading assembly code onto 
Microchip PIC microcontrollers, and a toolkit for graphing 
data obtained from a Foundation. The Logo compilers and 
the PIC assembler are also implemented in another version 
of the Logo language for desktop computers, making them 
relatively easily extendable to those with some technical 
background. 

Foundation Firmware 
The Tower software system is based on a virtual machine 
(VM) running on each Foundation, and a compiler for the 
virtual machine running on a desktop development 
environment. The virtual machines have a simple, stack-
based architecture, allowing both their implementation (in 
assembly language or C) and their compilers to be written 

- 4 - 



The PIC Virtual Machine with a minimal amount of code, as well as making them 
relatively easy to port between processors. The PIC virtual machine is implemented in PIC assembly 

language. Both the virtual machine and the user code reside 
in the eight-kilobyte EEPROM persistent storage in the 
PIC. The PIC’s 384 bytes of RAM hold the Logo stack, 
global variables, and a pair of I2C buffers for input and 
output. The features of the PIC virtual machine are outlined 
in Table 2. 

This approach also provides direct interaction with the VM, 
in which a single line of code is transparently compiled, 
downloaded, and executed on the Foundation. Finally, the 
virtual machines’ structure allows new primitives to be 
easily added to a VM and its associated compiler to provide 
faster code execution or low-level control of the 
processor’s features. The PIC virtual machine has two process threads: a 

foreground process and a background daemon. In most 
programs, the foreground thread handles all the work, but 
for some tasks, the background daemon is valuable. For 
example, the background daemon can be used to instigate a 
periodic activity, or take action when some event occurs.  

This section describes the design of the virtual machines. 
We begin with the design of the PIC virtual machine, 
which is largely an adaptation of our prior work on other 
PIC microcontrollers [7], and move on to describe the VM 
for the Rabbit Foundation and the added features that using 
this processor provides. 
 
 PIC VM Rabbit VM 
Target platform PIC16F876 & 

PIC16F877 
RCM2200 & 
RCM2300 

VM 
implementation 
language 

PIC Assembly Rabbit C 

Processor clock 
speed 

8 Mhz (future: 20 
Mhz) 

22.1 Mhz 

Processor data 
storage 

384 bytes RAM 
8 kilobytes 
EEPROM 

128 kilobytes 
RAM 
256 kilobytes 
EEPROM 

Math 16-bit signed 
integers 

32-bit signed 
integers and 
floating-point 

Timer 32-second timer 24-day timer 
128-year clock 

Multitasking 2 processes 20 processes 
Logo execution 
speed 

~13,000 Logo 
instructions/sec 

~11,000 Logo 
instructions/sec 

Variables 96 global 
variables (16 bit) 
procedure 
arguments 

128 global 
variables (32 bit) 
procedure 
arguments 
local variables 
inside procedures 

I2C bus Hardware 
support built-in 

Uses external 
PIC16F876 on 
Foundation 

Onboard serial 
ports 

1 3 (plus one used 
for I2C PIC) 

Other  String 
manipulation 
Arrays 
TCP/IP stack, 10 
base-T Ethernet 

In addition to control flow, math, and multitasking support, 
there are hardware-specific primitives for interacting with 
on-board PIC hardware. These simply read and set internal 
registers on the PIC and are almost always used to control 
the PIC’s I/O pins. Functions to control the I2C bus are also 
available. Furthermore, user-defined procedures 
supplement the primitives provided by the language; the 
procedures can accept an arbitrary number of inputs and 
optionally produce an output.  
Although primitive functions have been provided for 
expected user needs, it is relatively easy to add new 
primitives to the virtual machine because it uses a simple 
table dispatch mechanism to jump to the desired procedure. 
Small assembly language routines already exist for using 
the stack to fetch arguments and store results, making it 
relatively easy to build a new primitive into the existing 
code.  
The Rabbit Virtual Machine 
The Rabbit virtual machine is written in Rabbit C, 
providing a much more transparent and more portable 
implementation of the virtual machine The use of C for the 
Rabbit VM does slow the virtual machine somewhat, but it 
has also allowed us to leverage a very large body of code 
provided by the Rabbit processor’s manufacturer, as well as 
shortening the time to implement and port the VM. The 
Rabbit VM supports all of the features described above, but 
the added capabilities of the Rabbit processor have allowed 
us to add a number of new features to the Logo language 
supported by the Rabbit VM.  
The large amount of additional RAM available to the 
Rabbit processor provides the space necessary to 
implement local variables within procedures, as well as a 
much more powerful multitasking mechanism. By saving 
twenty separate program stacks, the VM is able to execute 
twenty separate Logo programs simultaneously. The 
additional RAM also makes it practical to store and 
manipulate strings in memory, and so we have created 
primitives to use the Rabbit’s C string manipulation 
functions. 

Table 1: Features of the PIC and Rabbit virtual 
machines 

 Feature Description 

- 5 - 



Procedures Arbitrary number of inputs allowed, 
may provide return value 

Number system 16-bit signed integers (PIC) or 32-bit 
signed integers + floating-point 
(Rabbit) 
Add, subtract, multiply, divide, 
remainder, and modulus operators 
Greater than, less than, equality 
operators 
And, or, not, and exclusive-or 
operators 
Random number generator 

Variables 96 (PIC) or up to 128 (Rabbit) 
available global variables 
procedure arguments 
local variables, string manipulation, 
arrays (Rabbit only) 

Control 
structures 

If-then; if-then-else  
loops (repeat n times or infinite) 
waituntil (Boolean expression) 

Multitasking PIC: One foreground thread plus one 
background daemon 
PIC: Daemon fires when provided 
Boolean expression makes false-to-
true transition 
Rabbit: up to 20 simultaneous process, 
with ability to halt a running process 

Hardware Control of I/O, entire ports or 
individual pins 

Communication I2C communication, serial 
communication 

Tower Development Environment 
The Tower Development Environment (TDE) is an 
integrated development environment for programming both 
Foundations in Logo, downloading assembly code onto a 
PIC, and a data-graphing package used to visualize data 
collected on a Tower. A screen shot of the current research 
prototype is seen in Figure 3. The environment provides 
functionality to save and load its state and select a 
communication port, but the bulk of its functionality lies in 
the tabs seen in the interface.  
The Rabbit and PIC Logo tabs are nearly identical, 
providing a large text area used to run a single line of Logo 
code on the target Foundation. When the enter key is 
pressed in this window, the TDE compiles and downloads 
the code to the Foundation, which immediately runs it. Any 
text sent back across the serial port by the Foundation is 
printed directly into the text area where the line of code 
was entered. The two Logo tabs also provide a means to 
load a text file containing Logo procedures onto a 
Foundation. By using a special “include” directive in this 
file, a user can use other text files containing libraries 
written in Logo, such as those that provide functions for the 
Foundation to talk to a particular layer. 

 
Figure 3: The Tower Development Environment 

The graphing module in the TDE provides a way to capture 
data stored on a Tower so that it can be graphed and saved 
as a text file for analysis by external software tools. There 
are a number of different, standard graphing formats 
available, and the graphing module also utilizes a Logo 
environment to allow the data to be processed before it is 
graphed to generate a histogram or other visualization. 

Table 2: Logo Virtual Machine Features 
Rabbit C also permits us to easily use 32-bit signed 
integers, allowing for vastly larger numbers to be stored in 
variables. One effect of this change is seen in the fact that 
the PIC’s 15-bit timer overflows after 32 seconds, but the 
Rabbit’s overflows after 24 days. The Rabbit VM also 
provides access to the Rabbit’s floating-point math 
functions, including conversion to and from integers and 
trigonometric functions. 

The compilers and assembler are also written in a variant of 
the Logo language, allowing them to be relatively easily 
modified and extended. In fact, it’s extremely easy to 
simply add another primitive, which must be done after a 
new primitive is added to either virtual machine, as 
discussed above. The primitives for each VM are simply 
stored in a list at the end of each compiler file, providing a 
transparent and easy way to add new items to the 
compiler’s primitive database. 

Another key feature of the Rabbit processors is the fact that 
the RCM2200 module includes an Ethernet connector, and 
the Rabbit VM provides a number of functions to set the 
Rabbit’s IP address, open socket connections, accept 
incoming connections, and read and write to these sockets. 
Using these primitive functions, we have written Logo code 
for standard network applications, such as a web server and 
a function to send an email. Custom servers can also be 
easily written to pass data between Rabbits or between a 
Rabbit and a desktop computer. 

Anatomy of a Layer 
As mentioned above, each layer on the Tower has its own 
PIC Microcontroller on-board, which communicates with 
the Foundation via the I2C serial protocol.  Each layer then 
performs the desired operations and returns the result to the 
Foundation if needed.  For example, the Sensor layer has an 

- 6 - 



In many of the settings in which we work, access to circuit 
board fabrication resources is sparse, if available at all.  To 
remedy this situation, other research in our group is focused 
on using the Tower itself to control extremely low-cost 
systems for etching circuit boards, as well as creating the 
programming and testing equipment needed to enable users 
to not only make new layers, but eventually reproduce the 
entire Tower system itself using Towers. 

eight channel serial analog-to-digital converter on board.  
Each sensor port has a pull-down resistor, so that resistive 
measurements can easily be made by connecting a resistor 
to the port, thereby creating a voltage at the input to the 
A/D converter proportional to the resistor ratio.  As the 
Foundation asks for the reading from Sensor 3, the 
Microcontroller on the layer queries the A/D converter chip 
for the value at its input port.  Once the result is returned to 
the Microcontroller, it is properly formatted and stored in a 
buffer so that the Foundation can obtain it and the user can 
reference it in their program. 

EVALUATIONS OF INITIAL USER EXPERIENCES 
The Tower is already being used as the functional 
electronics core for a wide variety of applications from 
robotics to process modeling, personal fabrication, and 
artistic design applications. 

At the core of the firmware programmed onto each layer, is 
a complex interrupt handler that controls all I2C 
communications with the Foundation.  The entire 
processing code for each layer is written entirely in 
assembly, but we have been working to make it much 
easier for novices to implement their own layers. 

One of the first applications to use the Tower was ALF [6], 
a fully laser-cut robotic head that can be assembled by 
anyone in a short amount of time. His brain is a Tower, 
capable of driving the necessary actuation, as well as 
providing a programmable interface to the outside world 
that allows him to react to visitors and converse with other 
ALFs.  The Tower functioned well in this situation, due to 
its rapid reconfigurability, allowing kids to easily give ALF 
new abilities as their interest and knowledge about the 
system grew. 

By adding I2C slave primitives to the VM, we have enabled 
users to easily program their own layer code in Logo, 
vastly reducing the threshold for novices to extend the 
Tower system.  In fact, we have even created a special 
“PicProto” layer for the system, which has prototyping 
space, as well as an onboard PIC Microcontroller tied 
directly into the I2C bus lines, with breakout points for 
every I/O pin.  This makes it exceptionally easy for users to 
build up working prototypes in a single afternoon. 

The Musical Instrument Construction Kit [9], another early 
application using the Tower, is a hands-on activity 
designed to introduce kids and adults to musical instrument 
design with insight into how music itself is shaped and 
created. The Tower is used to read sensor arrays and 
process those signals into MIDI music output per the 
algorithms designed by the user.  The Tower’s ability to 
quickly and easily interface to desktop programming 
environments enabled the creation of a working prototype 
in a very short amount of time, and as the Tower’s 
functionality continues to expand, the long-term 
capabilities of the MICK are effectively boundless. 

For people who are less comfortable with soldering, we 
even have an off-stack PicProto layer, which connects to 
the tower via the I2C breakout bus.  This module can easily 
be placed in a standard solderless breadboard, where uses 
can experiment by plugging in and easily removing wires, 
while still remaining connected to the Tower for 
development purposes, as shown in Figure 4. 

 

Recently, we collaborated with artists at The Ark in Dublin 
to create a workshop in which children and their parents 
used the CodaChrome [3] system to design electronics-
enabled jewelry with swirling light patterns, sensor inputs, 
and anything else they could imagine.   As the hardware 
portion of the system, the Tower again served this purpose 
well, providing a non-intimidating interface between 
computers and the real world that was easy to use, yet also 
provided sufficient computational power for more 
ambitious artists. 
The Tabletop Process Modeling Toolkit [4] allows non-
technical members of a business to participate in the 
construction and manipulation of dynamic simulations of 
the work processes by providing a transparent, tangible 
representation of the simulation. The Tower system was 
easily extended to fit this application’s need for a multi-
port Serial Communication layer used to connect modules 
in the simulation, and the Rabbit Foundation's string and 
array manipulation capabilities have provided for the rapid-

Figure 4: A Tower with a PicProto layer and an off-
stack PicProto module 

However, one of our goals has been to encourage users of 
the system to make the new layers they design available to 
others.  We encourage people who create layers to submit 
them back to us for inclusion in the overall Tower 
distribution.   

- 7 - 



implementation of packet-level communication between 
these new layers. 

We are continuing to work with our long-term 
collaborators, both domestically and abroad, on using the 
Tower to serve the needs of their local communities, and 
observing how a system such as this successfully adapts to 
different and challenging environments.   

We are involved in a large scale experiment to study how 
IP-enabled building control systems changes the way that 
people work and live in their work environments and 
homes. Towers are being used as nodes on the building 
network to provide unique I/O capabilities.  The ease with 
which Towers can be programmed by novice users gives 
anyone in the building an easy entry-point into designing 
their own building-level interfaces to monitor or modify the 
ways in which they act within their surroundings. 

As the development of the Tower-based fabrication lab 
continues, we will soon be able to show a Tower-based 
oscilloscope, milling machine, and personal computer— 
enough needed to successfully design and build a Tower 
with Towers, a true accomplishment in design of a self-
replicating system. 

A large portion of Tower deployment thus far has been in 
the form of a collaboration with the Instituto Tecnologico 
in Costa Rica, in a university level course in which students 
design projects to directly benefit local rural communities.  
Student teams are comprised of Electronics, Computer, and 
Industrial Design students, who are now using the Tower to 
prototype their applications.  The students were involved in 
an intense 3-day workshop-style introduction to the Tower, 
and by the end of the first day were already designing and 
building new layers for the Tower to meet specific needs of 
their demanding applications. 

As the Tower finds a niche within the CHI community of 
interface builders, even more valuable additions will be 
made to the toolkit, which will benefit the community as a 
whole, significantly reducing the time-to-prototype for 
complex tangible user-interface designs.  The roles of 
technologists and artists in the field will merge, enabling a 
much more focused work environment, and giving those 
who envision projects the tools they need to actually see 
their projects to fruition. 
ACKNOWLEDGMENTS 
We would like to thank all the members of the Grassroots 
Invention Group at the MIT Media Lab for their help in 
developing the Tower system, especially Brian Silverman 
for his continued contributions. We would also like to 
thank Sara Cinnamon for her assistance in preparing this 
paper. 

 

REFERENCES 
1. Aesthetics+Computation Group and their projects at 

MIT Media Lab, <http://acg.media.mit.edu/>. 
2. Computing Culture Group and their projects at the MIT 

Media Lab <http://compcult.media.mit.edu/>. 
3. Dekoli, M., Gorton, T., Lyon, C., Mikhak, M. (2002). 

Codachrome: Thinking About and Making Light 
Patterns. Submitted as a long paper in CHI 2003. 

4. Gorton, T., Mikhak, M. Tabletop Process Modeling 
Toolkit. Demonstration at Computer-Supported 
Collaborative Work Conference, 2002.  

Figure 5: Costa Rican students discussing their Tower 
project 

5. Kornhauser, D. (2002) ESTAMPA. MS dissertation, 
Media Arts and Sciences, MIT. 

VISION AND FUTURE STUDIES 
We have just begun to lay the framework for building and 
nurturing a large community of Tower users.  
Documentation and online support systems are in place, 
and production runs are in progress to meet the needs of 
our growing user-base.   

6. Lyon, C., Mikhak, M. (2002). ALF: Kids Making Faces. 
Submitted as a long paper in CHI 2003. 

7. Martin, F., Mikhak, B., Silverman, B. (2000). 
MetaCricket: A designer's kit for making computational 
devices. IBM Systems Journal (Vol. 39, Nos. 3 & 4) The core set of layers needed for basic applications have 

been produced, and our many of our collaborators are now 
beginning to add layers to the system, just as we had 
envisioned.  As the system itself sees greater usage, 
comments from users are being incorporated into design 
revisions to help further stabilize the development 
environment. 

8. Piaget, J. (1946) The child’s conception of time English 
Translation, Routledge and Kegan Paul Ltd., London, 
1969. New York: Basic Books. 

9. Thibault, S., Lyon, C., Dekoli, M., Mikhak, M. (2002). 
MICK: A Constructionist Toolkit for Music Education. 
Submitted as a long paper in CHI 2003. 

 

- 8 - 


	Grassroots Invention Group
	20 Ames Street
	ABSTRACT
	Keywords

	INTRODUCTION
	GUIDING DESIGN PRINCIPLES
	APPLICATION SCENARIOS
	Shared artifact
	Doorway Interaction and Ambient Display
	Tagged Objects
	SYSTEM DESIGN
	Foundation Hardware
	
	
	
	
	
	Figure 2: Foundation Connector Pinout






	Foundation Firmware
	The PIC Virtual Machine
	The Rabbit Virtual Machine
	Tower Development Environment
	Anatomy of a Layer
	EVALUATIONS OF INITIAL USER EXPERIENCES
	VISION AND FUTURE STUDIES
	ACKNOWLEDGMENTS
	REFERENCES

